545 research outputs found
In-field assessment of change-of-direction ability with a single wearable sensor.
The Agility T-test is a standardized method to measure the change-of-direction (COD) ability of athletes in the field. It is traditionally scored based on the total completion time, which does not provide information on the different CODs. Augmenting the T-test with wearable sensors provides the opportunity to explore new metrics. Towards this, data of 23 professional soccer players were recorded with a trunk-worn GNSS-IMU (Global Navigation Satellite System-Inertial Measurement Unit) device. A method for detecting the four CODs based on the wavelet-denoised antero-posterior acceleration signal was developed and validated using video data (60 Hz). Following this, completion time was estimated using GNSS ground speed and validated with the photocell data. The proposed method yields an error (mean ± standard deviation) of 0 ± 66 ms for the COD detection, - 0.16 ± 0.22 s for completion time, and a relative error for each COD duration and each sequential movement durations of less than 3.5 ± 16% and 7 ± 7%, respectively. The presented algorithm can highlight the asymmetric performance between the phases and CODs in the right and left direction. By providing a more comprehensive analysis in the field, this work can enable coaches to develop more personalized training and rehabilitation programs
Environmental stress linked to consumption of maternally derived carotenoids in brown trout embryos (Salmo trutta).
The yellow, orange, or red colors of salmonid eggs are due to maternally derived carotenoids whose functions are not sufficiently understood yet. Here, we studied the significance of naturally acquired carotenoids as maternal environmental effects during embryo development in brown trout (Salmo trutta). We collected eggs from wild females, quantified their egg carotenoid content, fertilized them in vitro in full-factorial breeding blocks to separate maternal from paternal effects, and raised 3,278 embryos singly at various stress conditions until hatching. We found significant sire effects that revealed additive genetic variance for embryo survival and hatching time. Dam effects were 5.4 times larger than these sire effects, indicating that maternal environmental effects play an important role in determining embryo stress tolerance. Of the eight pigment molecules that we targeted, only astaxanthin, zeaxanthin (that both affected egg redness), and lutein were detected above our confidence thresholds. No strong link could be observed between carotenoid content in unfertilized eggs and embryo mortality or hatching timing. However, the consumption of carotenoids during our stress treatment was negatively correlated to embryo survival among sib groups and explained about 14% of the maternal environmental variance. We conclude that maternally derived carotenoids play a role in the ability of embryos to cope with environmental stress, but that the initial susceptibility to the organic pollution was mainly determined by other factors
Model for a-Si:H/c-Si interface recombination based on the amphoteric nature of silicon dangling bonds
The performance of many silicon devices is limited by electronic recombination losses at the crystalline silicon (c-Si) surface. A proper surface passivation scheme is needed to allow minimizing these losses. The surface passivation properties of amorphous hydrogenated silicon (a-Si:H) on monocrystalline Si wafers are investigated here. We introduce a simple model for the description of the surface recombination mechanism based on recombination through amphoteric defects, i.e. dangling bonds, already established for bulk a-Si:H. In this model, the injection-dependent recombination at the a-Si:H/c-Si interface is governed by the density and the average state of charge of the amphoteric recombination centers. We show that with our surface recombination model, we can discriminate between the respective contribution of the two main mechanisms leading to improved surface passivation, which is achieved by (a) the minimization of the density of recombination centers and (b) the strong reduction of the density of one carrier type near the interface by field effect. We can thereafter reproduce the behaviors experimentally observed for the dependence of the surface recombination on the injection level on different wafers, i.e., of both p and n doping type as well as intrinsic. Finally, we are able to exploit the good surface passivation properties of our a-Si:H layers by fabricating flat heterojunction solar cells with open-circuit voltages exceeding 700 mV. © 2007 The American Physical Society
Propylthiocyclopentadiene: A new synthetic route to complexes of iron and group 4 transition metals. Molecular structure of (C5H4SCH2CH2CH3)(2)ZrCl2
The use of the propylthio-substituted cyclopentadienylsodium salt leads to 1,1'-bis(propylthio) ferrocene and dichlorobis(propylthiocyclopentadienyl)zirconium, titanium or hafnium(IV). The structure of (C5H4SCH2CH2CH3)(2)ZrCl2 has been established by X-ray analysis (orthorhombic, Pbcn, a = 11.943(1) Angstrom, b = 6.883(2) Angstrom, c = 22.412(2) Angstrom, V = 1842.4(2) Angstrom(3), Z = 4, R(F) = 0.027). The complexes have been characterized by H-1 and C-13 NMR and electrochemical studies. The physico chemical properties of 1,1'-bis(propylthio) ferrocene are discussed by a molecular approach at the extended Huckel level
Alternative reproductive tactics, sperm mobility and oxidative stress in Carollia perspicillata (Seba's short-tailed bat)
In social systems with alternative reproductive tactics, sneakers face a higher level of sperm competition than harem males and hence are predicted to allocate more resources to ejaculates. Antioxidants can protect sperm against oxidative stress, and thus, their allocation to the ejaculate may depend on mating tactic. In this study on the frugivorous bat Carollia perspicillata, we assessed, for harem and sneaker males, four spermmobility traits, blood and ejaculatemarkers of the redox balance and the ejaculate to blood ratios of the redox markers. Under higher sperm competition, sneaker males should allocate proportionally more antioxidant resources to the protection of sperm than harem males. In contrast, harem males should favour pre-copulatory functions, which comprise the protection of blood. We found significantly higher sperm velocity and sperm survival in sneakers. There was no correlation between spermmobility and spermenzymatic antioxidant activity or ejaculate levels of lipid peroxidation (oxidative damage). Ejaculate levels of lipid peroxidation and sperm survival showed a significantly positive correlation, which could be attributed to the role of reactive oxygen species for sperm capacitation. Harem and sneaker males showed similar levels of redox balance markers in ejaculate and blood. However, harem males showed a higher ratio of oxidized over reduced glutathione in blood, which may indicate higher cellular stress due to higher metabolism. Overall, our findings suggest that sneakers of C. perspicillata compensate for a higher level of sperm competition by higher sperm mobility.
Significance statement
In social systems with alternative reproductive tactics, sneakers face higher level of sperm competition than harem males and hence are predicted to allocate more resources to ejaculates. Antioxidants can protect sperm against oxidative stress, and thus, their allocation to the ejaculate may depend on mating tactic. In this study on the frugivorous bat Carollia perspicillata, we found sperm swimming significantly faster and longer in sneaker males compared to harem males. However, traits other than the investigated antioxidant may favour higher sperm mobility. Measured redox pattern in blood of harem males may indicate higher cellular stress due to higher metabolism. Our results provide support to the current sperm competition models at the intraspecific level, which is still debated for internal fertilizers. This study contributes to better understanding the trade-offs and adaptations resulting from alternative reproductive tactics in mammals
Observation of a New Type of Low Frequency Waves at Comet 67P/Churyumov-Gerasimenko
We report on magnetic field measurements made in the innermost coma of
67P/Churyumov-Gerasimenko in its low activity state. Quasi-coherent,
large-amplitude (), compressional magnetic field
oscillations at 40 mHz dominate the immediate plasma environment of the
nucleus. This differs from previously studied comet-interaction regions where
waves at the cometary ion gyro-frequencies are the main feature. Thus classical
pick-up ion driven instabilities are unable to explain the observations. We
propose a cross-field current instability associated with newborn cometary ion
currents as a possible source mechanism.Comment: 6 pages, 3 Figure
- …