1,336 research outputs found

    Topological derivation of shape exponents for stretched exponential relaxation

    Get PDF
    In homogeneous glasses, values of the important dimensionless stretched-exponential shape parameter beta are shown to be determined by magic (not adjusted) simple fractions derived from fractal configuration spaces of effective dimension d* by applying different topological axioms (rules) in the presence (absence) of a forcing electric field. The rules are based on a new central principle for defining glassy states: equal a priori distributions of fractal residual configurational entropy. Our approach and its beta estimates are fully supported by the results of relaxation measurements involving many different glassy materials and probe methods. The present unique topological predictions for beta typically agree with observed values to ~ 1% and indicate that for field-forced conditions beta should be constant for appreciable ranges of such exogenous variables as temperature and ionic concentration, as indeed observed using appropriate data analysis. The present approach can also be inverted and used to test sample homogeneity and quality.Comment: Original 13 pages lengthened to 21 pages (longer introduction, added references and discussion of new experimental data published since original submission

    Determination of solid mass fraction in partially frozen hydrocarbon fuels

    Get PDF
    Filtration procedures alone are insufficient to determine the amounts of crystalline solid in a partially frozen hydrocarbon distillate fraction. This is due to the nature of the solidification process by which a large amount of liquid becomes entrapped within an interconnected crystalline structure. A technique has been developed to supplement filtration methods with an independent determination of the amount of liquid in the precipitate thereby revealing the actual value of mass percent crystalline solid, %S. A non-crystallizing dye is injected into the fuel and used as a tracer during the filtration. The relative concentrations of the dye in the filtrate and precipitate fractions is subsequently detected by a spectrophotometric comparison. The filtration apparatus was assembled so that the temperature of the sample is recorded immediately above the filter. Also, a second method of calculation has been established which allows significant reduction in test time while retaining acceptable accuracy of results. Data have been obtained for eight different kerosene range hydrocarbon fuels

    Temperature in nonequilibrium systems with conserved energy

    Full text link
    We study a class of nonequilibrium lattice models which describe local redistributions of a globally conserved energy. A particular subclass can be solved analytically, allowing to define a temperature T_{th} along the same lines as in the equilibrium microcanonical ensemble. The fluctuation-dissipation relation is explicitely found to be linear, but its slope differs from the inverse temperature T_{th}^{-1}. A numerical renormalization group procedure suggests that, at a coarse-grained level, all models behave similarly, leading to a two-parameter description of their macroscopic properties.Comment: 4 pages, 1 figure, final versio

    Heat capacity at the glass transition

    Full text link
    A fundamental problem of glass transition is to explain the jump of heat capacity at the glass transition temperature TgT_g without asserting the existence of a distinct solid glass phase. This problem is also common to other disordered systems, including spin glasses. We propose that if TgT_g is defined as the temperature at which the liquid stops relaxing at the experimental time scale, the jump of heat capacity at TgT_g follows as a necessary consequence due to the change of system's elastic, vibrational and thermal properties. In this picture, we discuss time-dependent effects of glass transition, and identify three distinct regimes of relaxation. Our approach explains widely observed logarithmic increase of TgT_g with the quench rate and the correlation of heat capacity jump with liquid fragility

    New evidence shows that letting people vote early benefits Republicans while Election-Day Registration helps Democrats

    Get PDF
    While Republicans tend to make it harder for people to vote through initiatives such as Voter ID requirements, Democrats tend to be in favor of measures which make voting easier, such as early and Election-Day registration. But do both measures advocated by Democrats actually have an impact on turnout? Barry Burden, David Canon, Ken Mayer and Donald Moynihan have examined vote returns across three presidential elections and find that while Election-Day registration laws are better at stimulating those who are on the fence to turn out – usually Democrats, early voting measures tend to encourage those who have already decided to vote – usually Republicans

    The Glass Transition Temperature of Water: A Simulation Study

    Full text link
    We report a computer simulation study of the glass transition for water. To mimic the difference between standard and hyperquenched glass, we generate glassy configurations with different cooling rates and calculate the TT dependence of the specific heat on heating. The absence of crystallization phenomena allows us, for properly annealed samples, to detect in the specific heat the simultaneous presence of a weak pre-peak (``shadow transition''), and an intense glass transition peak at higher temperature. We discuss the implications for the currently debated value of the glass transition temperature of water. We also compare our simulation results with the Tool-Narayanaswamy-Moynihan phenomenological model.Comment: submitted to Phys. Re

    Internal Friction and Vulnerability of Mixed Alkali Glasses

    Full text link
    Based on a hopping model we show how the mixed alkali effect in glasses can be understood if only a small fraction c_V ofthe available sites for the mobile ions is vacant. In particular, we reproduce the peculiar behavior of the internal friction and the steep fall (''vulnerability'') of the mobility of the majority ion upon small replacements by the minority ion. The single and mixed alkali internal friction peaks are caused by ion-vacancy and ion-ion exchange processes. If c_V is small, they can become comparable in height even at small mixing ratios. The large vulnerability is explained by a trapping of vacancies induced by the minority ions. Reasonable choices of model parameters yield typical behaviors found in experiments.Comment: 4 pages, 4 figure

    Challenges Encountered Using Ophthalmic Anesthetics in Space Medicine

    Get PDF
    On orbit, ophthalmic anesthetics are used for tonometry and off-nominal corneal examinations. Proparacaine has been flown traditionally. However, the manufacturers recently changed its storage requirements from room temperature storage to refrigerated storage to preserve stability and prolong the shelf-life. Since refrigeration on orbit is not readily available and there were stability concerns about flying proparacaine unrefrigerated, tetracaine was selected as an alternative ophthalmic anesthetic in 2013. We will discuss the challenges encountered flying and using these anesthetics on the International Space Station

    Feasibility of single-order parameter description of equilibrium viscous liquid dynamics

    Get PDF
    Molecular dynamics results for the dynamic Prigogine-Defay ratio are presented for two glass-forming liquids, thus evaluating the experimentally relevant quantity for testing whether metastable-equilibrium liquid dynamics to a good approximation are described by a single parameter. For the Kob-Andersen binary Lennard-Jones mixture as well as for an asymmetric dumbbell model liquid a single-parameter description works quite well. This is confirmed by time-domain results where it is found that energy and pressure fluctuations are strongly correlated on the alpha-time scale in the NVT ensemble; in the NpT ensemble energy and volume fluctuations similarly correlate strongly.Comment: Phys. Rev. E, in pres

    Solidity of Viscous Liquids

    Full text link
    Recent NMR experiments on supercooled toluene and glycerol by Hinze and Bohmer show that small rotation angles dominate with only few large molecular rotations. These results are here interpreted by assuming that viscous liquids are solid-like on short length scales. A characteristic length, the "solidity length", separates solid-like behavior from liquid-like behavior.Comment: Plain RevTex file, no figure
    corecore