87 research outputs found
Transmission of Foot-and-Mouth Disease Virus during the Incubation Period in Pigs.
Understanding the quantitative characteristics of a pathogen's capability to transmit during distinct phases of infection is important to enable accurate predictions of the spread and impact of a disease outbreak. In the current investigation, the potential for transmission of foot-and-mouth disease virus (FMDV) during the incubation (preclinical) period of infection was investigated in seven groups of pigs that were sequentially exposed to a group of donor pigs that were infected by simulated-natural inoculation. Contact-exposed pigs were comingled with infected donors through successive 8-h time slots spanning from 8 to 64 h post-inoculation (hpi) of the donor pigs. The transition from latent to infectious periods in the donor pigs was clearly defined by successful transmission of foot-and-mouth disease (FMD) to all contact pigs that were exposed to the donors from 24 hpi and later. This onset of infectiousness occurred concurrent with detection of viremia, but approximately 24 h prior to the first appearance of clinical signs of FMD in the donors. Thus, the latent period of infection ended approximately 24 h before the end of the incubation period. There were significant differences between contact-exposed groups in the time elapsed from virus exposure to the first detection of FMDV shedding, viremia, and clinical lesions. Specifically, the onset and progression of clinical FMD were more rapid in pigs that had been exposed to the donor pigs during more advanced phases of disease, suggesting that these animals had received a higher effective challenge dose. These results demonstrate transmission and dissemination of FMD within groups of pigs during the incubation period of infection. Furthermore, these findings suggest that under current conditions, shedding of FMDV in oropharyngeal fluids is a more precise proxy for FMDV infectiousness than clinical signs of infection. These findings may impact modeling of the propagation of FMD outbreaks that initiate in pig holdings and should be considered when designing FMD control strategies
Genome sequence of foot-and-mouth disease virus serotype O lineage ind-2001d collected in vietnam in 2015
© 2017 Arzt et al. In 2015, foot-and-mouth disease (FMD) virus lineage Ind-2001 was detected for the first time in Southeast Asia. This report contains the first nearcomplete genome sequence of a viral isolate from this lineage collected from an outbreak in Vietnam. This novel incursion has substantial implications for regional FMD control measures
Genome sequences of seven foot-andmouth disease virus isolates collected from serial samples from one persistently infected carrier cow in Vietnam
Several foot-and-mouth disease virus (FMDV) carrier cattle were identified in Vietnam by the recovery of infectious virus from oropharyngeal fluid. This report contains the first near-complete genome sequences of seven viruses from sequential samples from one carrier animal collected over the course of 1 year. The characterization of within-host viral evolution has implications for FMDV control strategies
Phylodynamics of foot-and-mouth disease virus O/PanAsia in Vietnam 2010-2014
© 2017 The Author(s). Foot-and-mouth disease virus (FMDV) is endemic in Vietnam, a country that plays an important role in livestock trade within Southeast Asia. The large populations of FMDV-susceptible species in Vietnam are important components of food production and of the national livelihood. In this study, we investigated the phylogeny of FMDV O/PanAsia in Vietnam, reconstructing the virus' ancestral host species (pig, cattle or buffalo), clinical stage (subclinical carrier or clinically affected) and geographical location. Phylogenetic divergence time estimation and character state reconstruction analyses suggest that movement of viruses between species differ. While inferred transmissions from cattle to buffalo and pigs and from pigs to cattle are well supported, transmission from buffalo to other species, and from pigs to buffalo may be less frequent. Geographical movements of FMDV O/PanAsia virus appears to occur in all directions within the country, with the South Central Coast and the Northeast regions playing a more important role in FMDV O/PanAsia spread. Genetic selection of variants with changes at specific sites within FMDV VP1 coding region was different depending on host groups analyzed. The overall ratio of non-synonymous to synonymous nucleotide changes was greater in pigs compared to cattle and buffalo, whereas a higher number of individual amino acid sites under positive selection were detected in persistently infected, subclinical animals compared to viruses collected from clinically diseased animals. These results provide novel insights to understand FMDV evolution and its association with viral spread within endemic countries. These findings may support animal health organizations in their endeavor to design animal disease control strategies in response to outbreaks
Formyl Peptide Receptor as a Novel Therapeutic Target for Anxiety-Related Disorders
Formyl peptide receptors (FPR) belong to a family of sensors of the immune system that detect microbe-associated molecules and inform various cellular and sensorial mechanisms to the presence of pathogens in the host. Here we demonstrate that Fpr2/3-deficient mice show a distinct profile of behaviour characterised by reduced anxiety in the marble burying and light-dark box paradigms, increased exploratory behaviour in an open-field, together with superior performance on a novel object recognition test. Pharmacological blockade with a formyl peptide receptor antagonist, Boc2, in wild type mice reproduced most of the behavioural changes observed in the Fpr2/3(-/-) mice, including a significant improvement in novel object discrimination and reduced anxiety in a light/dark shuttle test. These effects were associated with reduced FPR signalling in the gut as shown by the significant reduction in the levels of p-p38. Collectively, these findings suggest that homeostatic FPR signalling exerts a modulatory effect on anxiety-like behaviours. These findings thus suggest that therapies targeting FPRs may be a novel approach to ameliorate behavioural abnormalities present in neuropsychiatric disorders at the cognitive-emotional interface
NuSTAR observations of the bullet cluster: constraints on inverse compton emission
The search for diffuse non-thermal inverse Compton (IC) emission from galaxy clusters at hard X-ray energies has been undertaken with many instruments, with most detections being either of low significance or controversial. Because all prior telescopes sensitive at E > 10 keV do not focus light and have degree-scale fields of view, their backgrounds are both high and difficult to characterize. The associated uncertainties result in lower sensitivity to IC emission and a greater chance of false detection. In this work, we present 266 ks NuSTAR observations of the Bullet cluster, which is detected in the energy range 3-30 keV. NuSTAR's unprecedented hard X-ray focusing capability largely eliminates confusion between diffuse IC and point sources; however, at the highest energies, the background still dominates and must be well understood. To this end, we have developed a complete background model constructed of physically inspired components constrained by extragalactic survey field observations, the specific parameters of which are derived locally from data in non-source regions of target observations. Applying the background model to the Bullet cluster data, we find that the spectrum is well-but not perfectly-described as an isothermal plasma with kT = 14.2 ± 0.2 keV. To slightly improve the fit, a second temperature component is added, which appears to account for lower temperature emission from the cool core, pushing the primary component to kT ~ 15.3 keV. We see no convincing need to invoke an IC component to describe the spectrum of the Bullet cluster, and instead argue that it is dominated at all energies by emission from purely thermal gas. The conservatively derived 90% upper limit on the IC flux of 1.1 × 10-12 erg s-1 cm-2 (50-100 keV), implying a lower limit on B ≳ 0.2 μG, is barely consistent with detected fluxes previously reported. In addition to discussing the possible origin of this discrepancy, we remark on the potential implications of this analysis for the prospects for detecting IC in galaxy clusters in the future
Mycobacteria Attenuate Nociceptive Responses by Formyl Peptide Receptor Triggered Opioid Peptide Release from Neutrophils
In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum, a component of complete Freund's adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR) and/or toll like receptor (TLR) agonists could activate neutrophils, leading to opioid peptide release and inhibition of inflammatory pain. In complete Freund's adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of the paw were quantified (Hargreaves and Randall-Selitto methods, respectively). Withdrawal time to heat was decreased following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e. Met-enkephalin, β-endorphin) antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptide release in vitro and increased inflammatory pain in vivo while TLR 2/4 did not appear to be involved. In summary, mycobacteria activate FPR on neutrophils, resulting in tonic secretion of opioid peptides from neutrophils and in a decrease in inflammatory pain. Future therapeutic strategies may aim at selective FPR agonists to boost endogenous analgesia
ApoE−/− PGC-1α−/− Mice Display Reduced IL-18 Levels and Do Not Develop Enhanced Atherosclerosis
BACKGROUND: Atherosclerosis is a chronic inflammatory disease that evolves from the interaction of activated endothelial cells, macrophages, lymphocytes and modified lipoproteins (LDLs). In the last years many molecules with crucial metabolic functions have been shown to prevent important steps in the progression of atherogenesis, including peroxisome proliferator activated receptors (PPARs) and the class III histone deacetylase (HDAC) SIRT1. The PPARγ coactivator 1 alpha (Ppargc1a or PGC-1α) was identified as an important transcriptional cofactor of PPARγ and is activated by SIRT1. The aim of this study was to analyze total PGC-1α deficiency in an atherosclerotic mouse model. METHODOLOGY/PRINCIPAL FINDINGS: To investigate if total PGC-1α deficiency affects atherosclerosis, we compared ApoE(-/-) PGC-1α(-/-) and ApoE(-/-) PGC-1α(+/+) mice kept on a high cholesterol diet. Despite having more macrophages and a higher ICAM-1 expression in plaques, ApoE(-/-) PGC-1α(-/-) did not display more or larger atherosclerotic plaques than their ApoE(-/-) PGC-1α(+/+) littermates. In line with the previously published phenotype of PGC-1α(-/-) mice, ApoE(-/-) PGC-1α(-/-) mice had marked reduced body, liver and epididymal white adipose tissue (WAT) weight. VLDL/LDL-cholesterol and triglyceride contents were also reduced. Aortic expression of PPARα and PPARγ, two crucial regulators for adipocyte differentiation and glucose and lipid metabolism, as well as the expression of some PPAR target genes was significantly reduced in ApoE(-/-) PGC-1α(-/-) mice. Importantly, the epididymal WAT and aortic expression of IL-18 and IL-18 plasma levels, a pro-atherosclerotic cytokine, was markedly reduced in ApoE(-/-) PGC-1α(-/-) mice. CONCLUSIONS/SIGNIFICANCE: ApoE(-/-) PGC-1α(-/-) mice, similar as PGC-1α(-/-) mice exhibit markedly reduced total body and visceral fat weight. Since inflammation of visceral fat is a crucial trigger of atherogenesis, decreased visceral fat in PGC-1α-deficient mice may explain why these mice do not develop enhanced atherosclerosis
- …