953 research outputs found
SN 1998bw at late phases
We present observations of the peculiar supernova SN 1998bw, which was
probably associated with GRB 980425. The photometric and spectroscopic
evolution is monitored up to 500 days past explosion. We also present modeling
based on spherically symmetric, massive progenitor models and very energetic
explosions. The models allow line identification and clearly show the
importance of mixing. From the late light curves we estimate that about 0.3-0.9
solar masses of ejected Nickel-56 is required to power the supernova.Comment: With 3 figures Accepted for ApJ Letter
Why did Supernova 1054 shine at late times?
The Crab nebula is the remnant of supernova 1054 (SN 1054). The progenitor of
this supernova has, based on nucleosynthesis arguments, been modeled as an 8-10
solar mass star. Here we point out that the observations of the late light
curve of SN 1054, from the historical records, are not compatible with the
standard scenario, in which the late time emission is powered by the
radioactive decay of small amounts of Ni-56. Based on model calculations we
quantify this discrepancy. The rather large mass of Ni-56 needed to power the
late time emission, 0.06[-0.03,+0.02] solar masses, seems inconsistent with
abundances in the Crab nebula. The late light curve may well have been powered
by the pulsar, which would make SN 1054 unique in this respect. Alternatively,
the late light curve could have been powered by circumstellar interaction, in
accordance with scenarios in which 8-10 solar mass stars are progenitors to
`dense wind' supernovae.Comment: 5 pages, 2 figures. Accepted for publication in A&
The luminous late-time emission of the type Ic supernova iPTF15dtg - evidence for powering from a magnetar?
iPTF15dtg is a Type Ic supernova (SN) showing a broad light curve around
maximum light, consistent with massive ejecta if we assume a
radioactive-powering scenario. We study the late-time light curve of iPTF15dtg,
which turned out to be extraordinarily luminous for a stripped-envelope (SE)
SN. We compare the observed light curves to those of other SE SNe and also with
models for the Co decay. We analyze and compare the spectra to nebular
spectra of other SE SNe. We build a bolometric light curve and fit it with
different models, including powering by radioactivity, magnetar powering, as
well as a combination of the two. Between 150 d and 750 d past explosion,
iPTF15dtg's luminosity declined by merely two magnitudes instead of the six
magnitudes expected from Co decay. This is the first
spectroscopically-regular SE SN showing this behavior. The model with both
radioactivity and magnetar powering provides the best fit to the light curve
and appears to be the more realistic powering mechanism. An alternative
mechanism might be CSM interaction. However, the spectra of iPTF15dtg are very
similar to those of other SE SNe, and do not show signs of strong CSM
interaction. iPTF15dtg is the first spectroscopically-regular SE SN whose light
curve displays such clear signs of a magnetar contributing to the powering of
the late time light curve. Given this result, the mass of the ejecta needs to
be revised to a lower value, and therefore the progenitor mass could be
significantly lower than the previously estimated 35 .Comment: 9 pages, 8 figures, accepted for publication in Astronomy and
Astrophysic
The nebular spectra of SN 2012aw and constraints on stellar nucleosynthesis from oxygen emission lines
We present nebular phase optical and near-infrared spectroscopy of the Type
IIP supernova SN 2012aw combined with NLTE radiative transfer calculations
applied to ejecta from stellar evolution/explosion models. Our spectral
synthesis models generally show good agreement with the ejecta from a MZAMS =
15 Msun progenitor star. The emission lines of oxygen, sodium, and magnesium
are all consistent with the nucleosynthesis in a progenitor in the 14 - 18 Msun
range. We also demonstrate how the evolution of the oxygen cooling lines of [O
I] 5577 A, [O I] 6300 A, and [O I] 6364 A can be used to constrain the mass of
oxygen in the non-molecularly cooled ashes to < 1 Msun, independent of the
mixing in the ejecta. This constraint implies that any progenitor model of
initial mass greater than 20 Msun would be difficult to reconcile with the
observed line strengths. A stellar progenitor of around MZAMS = 15 Msun can
consistently explain the directly measured luminosity of the progenitor star,
the observed nebular spectra, and the inferred pre-supernova mass-loss rate. We
conclude that there is still no convincing example of a Type IIP explosion
showing the nucleosynthesis expected from a MZAMS > 20 Msun progenitor.Comment: Accepted for publication in MNRA
Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh
We investigate line formation processes in Type IIb supernovae (SNe) from 100
to 500 days post-explosion using spectral synthesis calculations. The modeling
identifies the nuclear burning layers and physical mechanisms that produce the
major emission lines, and the diagnostic potential of these. We compare the
model calculations with data on the three best observed Type IIb SNe to-date -
SN 1993J, SN 2008ax, and SN 2011dh. Oxygen nucleosynthesis depends sensitively
on the main-sequence mass of the star and modeling of the [O I] 6300, 6364
lines constrains the progenitors of these three SNe to the M_ZAMS=12-16 M_sun
range (ejected oxygen masses 0.3-0.9 M_sun), with SN 2011dh towards the lower
end and SN 1993J towards the upper end of the range. The high ejecta masses
from M_ZAMS >= 17 M_sun progenitors give rise to brighter nebular phase
emission lines than observed. Nucleosynthesis analysis thus supports a scenario
of low/moderate mass progenitors for Type IIb SNe, and by implication an origin
in binary systems. We demonstrate how oxygen and magnesium recombination lines
may be combined to diagnose the magnesium mass in the SN ejecta. For SN 2011dh,
a magnesium mass of of 0.02-0.14 M_sun is derived, which gives a Mg/O
production ratio consistent with the solar value. Nitrogen left in the He
envelope from CNO-burning gives strong [N II] 6548, 6583 emission lines that
dominate over H-alpha emission in our models. The hydrogen envelopes of Type
IIb SNe are too small and dilute to produce any noticeable H-alpha emission or
absorption after ~150 days, and nebular phase emission seen around 6550 A is in
many cases likely caused by [N II] 6548, 6583. Finally, the influence of
radiative transport on the emergent line profiles is investigated...(abridged)Comment: Published versio
The first direct double neutron star merger detection: implications for cosmic nucleosynthesis
The astrophysical r-process site where about half of the elements heavier
than iron are produced has been a puzzle for several decades. Here we discuss
the role of neutron star mergers (NSMs) in the light of the first direct
detection of such an event in both gravitational (GW) and electromagnetic (EM)
waves. We analyse bolometric and NIR lightcurves of the first detected double
neutron star merger and compare them to nuclear reaction network-based
macronova models. The slope of the bolometric lightcurve is consistent with the
radioactive decay of neutron star ejecta with (but not
larger), which provides strong evidence for an r-process origin of the
electromagnetic emission. This rules out in particular "nickel winds" as major
source of the emission. We find that the NIR lightcurves can be well fitted
either with or without lanthanide-rich ejecta. Our limits on the ejecta mass
together with estimated rates directly confirm earlier purely theoretical or
indirect observational conclusions that double neutron star mergers are indeed
a major site of cosmic nucleosynthesis. If the ejecta mass was {\em typical},
NSMs can easily produce {\em all} of the estimated Galactic r-process matter,
and --depending on the real rate-- potentially even more. This could be a hint
that the event ejected a particularly large amount of mass, maybe due to a
substantial difference between the component masses. This would be compatible
with the mass limits obtained from the GW-observation. The recent observations
suggests that NSMs are responsible for a broad range of r-process nuclei and
that they are at least a major, but likely the dominant r-process site in the
Universe.Comment: 11 pages, 8 figures; accepted for A \&
A metallicity study of 1987A-like supernova host galaxies
The origin of the blue supergiant (BSG) progenitor of Supernova (SN) 1987A
has long been debated, along with the role that its sub-solar metallicity
played. We now have a sample of 1987A-like SNe that arise from the core
collapse (CC) of BSGs. The metallicity of the explosion sites of the known BSG
SNe is investigated, as well as their association to star-forming regions. Both
indirect and direct metallicity measurements of 13 BSG SN host galaxies are
presented, and compared to those of other CC SN types. Indirect measurements
are based on the known luminosity-metallicity relation and on published
metallicity gradients of spiral galaxies. To provide direct estimates based on
strong line diagnostics, we obtained spectra of each BSG SN host both at the SN
explosion site and at the positions of other HII regions. Continuum-subtracted
Ha images allowed us to quantify the association between BSG SNe and
star-forming regions. BSG SNe explode either in low-luminosity galaxies or at
large distances from the nuclei of luminous hosts. Therefore, their indirectly
measured metallicities are typically lower than those of SNe IIP and Ibc. This
is confirmed by the direct estimates, which show slightly sub-solar values
(12+log(O/H)=8.3-8.4 dex), similar to that of the Large Magellanic Cloud (LMC),
where SN 1987A exploded. However, two SNe (1998A and 2004em) were found at near
solar metallicity. SNe IIb have a metallicity distribution similar to that of
BSG SNe. Finally, the association to star-forming regions is similar among BSG
SNe, SNe IIP and IIn. Our results suggest that LMC metal abundances play a role
in the formation of some 1987A-like SNe. This would naturally fit in a single
star scenario for the progenitors. However, the existence of two events at
nearly solar metallicity suggests that also other channels, e.g. binarity,
contribute to produce BSG SNe.Comment: 28 pages, 17 figures; accepted for publication (Astronomy and
Astrophysics); abstract abridged for arXiv submissio
Supernova 1998bw - The final phases
The probable association with GRB 980425 immediately put SN 1998bw at the
forefront of supernova research. Here, we present revised late-time BVRI light
curves of the supernova, based on template images taken at the VLT. To follow
the supernova to the very last observable phases we have used HST/STIS. Deep
images taken in June and November 2000 are compared to images taken in August
2001. The identification of the supernova is firmly established. This allows us
to measure the light curve to about 1000 days past explosion. The main features
are a rapid decline up to more than 500 days after explosion, with no sign of
complete positron trapping from the Cobolt-56 decay. Thereafter, the light
curve flattens out significantly. One possible explanation is powering by more
long lived radioactive isotopes, if they are abundantly formed in this
energetic supernova.Comment: 13 pages, 5 figures, A&A, In pres
Metallicity at the explosion sites of interacting transients
Context. Some circumstellar-interacting (CSI) supernovae (SNe) are produced
by the explosions of massive stars that have lost mass shortly before the SN
explosion. There is evidence that the precursors of some SNe IIn were luminous
blue variable (LBV) stars. For a small number of CSI SNe, outbursts have been
observed before the SN explosion. Eruptive events of massive stars are named as
SN impostors (SN IMs) and whether they herald a forthcoming SN or not is still
unclear. The large variety of observational properties of CSI SNe suggests the
existence of other progenitors, such as red supergiant (RSG) stars with
superwinds. Furthermore, the role of metallicity in the mass loss of CSI SN
progenitors is still largely unexplored. Aims. Our goal is to gain insight on
the nature of the progenitor stars of CSI SNe by studying their environments,
in particular the metallicity at their locations. Methods. We obtain
metallicity measurements at the location of 60 transients (including SNe IIn,
SNe Ibn, and SN IMs), via emission-line diagnostic on optical spectra obtained
at the Nordic Optical Telescope and through public archives. Metallicity values
from the literature complement our sample. We compare the metallicity
distributions among the different CSI SN subtypes and to those of other
core-collapse SN types. We also search for possible correlations between
metallicity and CSI SN observational properties. Results. We find that SN IMs
tend to occur in environments with lower metallicity than those of SNe IIn.
Among SNe IIn, SN IIn-L(1998S-like) SNe show higher metallicities, similar to
those of SNe IIL/P, whereas long-lasting SNe IIn (1988Z-like) show lower
metallicities, similar to those of SN IMs. The metallicity distribution of SNe
IIn can be reproduced by combining the metallicity distributions of SN IMs
(that may be produced by major outbursts of massive stars like LBVs) and SNe
IIP (produced by RSGs). The same applies to the distributions of the Normalized
Cumulative Rank (NCR) values, which quantifies the SN association to H II
regions. For SNe IIn, we find larger mass-loss rates and higher CSM velocities
at higher metallicities. The luminosity increment in the optical bands during
SN IM outbursts tend to be larger at higher metallicity, whereas the SN IM
quiescent optical luminosities tend to be lower. Conclusions. The difference in
metallicity between SNe IIn and SN IMs suggests that LBVs are only one of the
progenitor channels for SNe IIn, with 1988Z-like and 1998S-like SNe possibly
arising from LBVs and RSGs, respectively. Finally, even though linedriven winds
likely do not primarily drive the late mass-loss of CSI SN progenitors,
metallicity has some impact on the observational properties of these
transients. Key words. supernovae: general - stars: evolution - galaxies:
abundancesComment: Submitted to Astronomy and Astrophysics on 28/02/2015; submitted to
arXiv after the 1st referee repor
- …