47 research outputs found

    Safety and Feasibility of Thoracic Malignancy Surgery During the COVID-19 Pandemic

    Get PDF
    Background: The coronavirus disease 2019 (COVID-19) pandemic has decreased surgical activity, particularly in the field of oncology, because of the suspicion of a higher risk of COVID-19–related severe events. This study aimed to investigate the feasibility and safety of thoracic cancer surgery in the most severely affected European and Canadian regions during the COVID-19 pandemic. Methods: The study investigators prospectively collected data on surgical procedures for malignant thoracic diseases from January 1 to April 30, 2020. The study included patients from 6 high-volume thoracic surgery departments: Nancy and Strasbourg (France), Freiburg (Germany), Milan and Turin (Italy), and Montreal (Canada). The centers involved in this research are all located in the most severely affected regions of those countries. An assessment of COVID-19–related symptoms, polymerase chain reaction (PCR)–confirmed COVID-19 infection, rates of hospital and intensive care unit admissions, and death was performed for each patient. Every deceased patient was tested for COVID-19 by PCR. Results: In the study period, 731 patients who underwent 734 surgical procedures were included. In the whole cohort, 9 cases (1.2%) of COVID-19 were confirmed by PCR, including 5 in-hospital contaminants. Four patients (0.5%) needed readmission for oxygen requirements. In this subgroup, 2 patients (0.3%) needed intensive care unit and mechanical ventilatory support. The total number of deaths in the whole cohort was 22 (3%). A single death was related to COVID-19 (0.14%). Conclusions: Maintaining surgical oncologic activity in the era of the COVID-19 pandemic seems safe and feasible, with very low postoperative morbidity or mortality. To continue to offer the best care to patients who do not have COVID-19, reports on other diseases are urgently needed

    Blind Testing: DNA Barcoding Sheds Light Upon the Identity of Plant Fragments as a Subsidy for Cave Conservation

    Get PDF
    Plants living above and around caves represent an important, albeit poorly studied, resource within cave ecosystems. The presence of plant material (root-like structures or rhizothemes, saplings, seeds, and seedlings) correlates positively with the biodiversity of the cave dwelling animals as shown for iron-ore caves in Carajás, Pará, Brazil. Plant material collected in caves has proven to be difficult to identify by traditional botanical methods, thus this research aims to provide a qualitative insight into the taxonomy and morphology of rhizothemes and other plant fragments found in the caves. The identification process used a combination of different molecular markers (ITS2, rbcL, and trnH-psbA) followed by a comparison of the sequences obtained against publicly available databases. The rhizothemes were submitted to micromorphological analysis to ascertain their putative root or stem origin and to compare their anatomy with known patterns found in the plant families or genera recovered through molecular matches. All studied samples were Angiosperms, mostly belonging to subclass Rosideae, within four orders: Malpighiales (Euphorbiaceae, Hypericaceae), Sapindales (Anacardiaceae and Sapindaceae), Myrtales (Myrtaceae), Fabales (Fabaceae), and only two belonging to subclass Asteridae, order Gentianales (Apocynaceae). Some of the samples were matched to generic level, with ITS2 being the best marker to identify the fragments because it shows high degree of sequence variation even at specific level and result reliability. All rhizothemes turned out to be roots, and correspondence was found between the existing literature and the individual anatomical patterns for the families and genera retrieved. DNA barcode has proved to be a useful tool to identify plant fragments found in this challenging environment. However, the existence of well curated, authoritatively named collections with ample biological information has proven to be essential to achieve a reliable identification

    Updating the list of chromosome numbers for Philodendron (Araceae)

    No full text
    ABSTRACT Aiming for a better understanding of karyotype evolution within Philodendron, we report chromosome counts for 23 species of the genus, of which 19 are being reported for the first time, thus increasing to 84 ( ca. 17 % of the genus) the total number of species with available chromosome counts. The diploid numbers 2 n = 32 and 2 n = 34 were the most common, with 10 and 11 species, respectively, whereas only two species presented different chromosome numbers ( P. giganteum with 2 n = 30 and P. adamantinum with 2 n = 36). The results are discussed in the context of previous analyses of karyotypes of Philodendron spp., taking into account bidirectional dysploidy as the main mechanism of chromosome number evolution within the genus

    Intra- and interspecific chromosome polymorphisms in cultivated Cichorium L. species (Asteraceae)

    No full text
    Endive (Cichorium endivia L.) and chicory (C. intybus L.) both have 2n = 18, but until now, there has been no detailed karyomorphological characterization. The present work evaluated five accessions of each species using FISH with rDNA probes and fluorochrome staining with CMA and DAPI. Both species presented distinct banding patterns after fluorochrome staining: while endive had proximal CMA++/DAPI- bands in the short arms of pairs 1, 2 and 3, chicory had proximal CMA-positive bands in chromosomes 1 and 3 and interstitial in the short arm of chromosome 8. Among endive accessions, FISH procedures revealed conserved position and number of 5S and 45S rDNA sites (two and three pairs, respectively), associated with the CMA-positive bands. Notwithstanding, polymorphisms were detected within chicory accessions regarding the number and the distribution of rDNA sites in relation to the most frequent karyotype (two pairs with 45S and one with 5S rDNA). The karyological markers developed allowed karyotypic differentiation between both species, uncovering peculiarities in the number and position of rDNA sites, which suggest chromosome rearrangements, such as translocations in chicory cultivars. The interspecific and intraspecific polymorphisms observed emphasize the potential of karyomorphological evaluations, helping our understanding of the relationships and evolution of the group
    corecore