1,229 research outputs found
Magmatic Cu-Ni-PGE-Au sulfide mineralisation in alkaline igneous systems: An example from the Sron Garbh intrusion, Tyndrum, Scotland
Magmatic sulfide deposits typically occur in ultramafic-mafic systems, however, mineralisation can occur in more intermediate and alkaline magmas. Sron Garbh is an appinite-diorite intrusion emplaced into Dalradian metasediments in the Tyndrum area of Scotland that hosts magmatic Cu-Ni-PGE-Au sulfide mineralisation in the appinitic portion. It is thus an example of magmatic sulfide mineralisation hosted by alkaline rocks, and is the most significantly mineralised appinitic intrusion known in the British Isles. The intrusion is irregularly shaped, with an appinite rim, comprising amphibole cumulates classed as vogesites. The central portion of the intrusion is comprised of unmineralised, but pyrite-bearing, diorites. Both appinites and diorites have similar trace element geochemistry that suggests the diorite is a more fractionated differentiate of the appinite from a common source that can be classed with the high Ba-Sr intrusions of the Scottish Caledonides. Mineralisation is present as a disseminated, primary chalcopyrite-pyrite-PGM assemblage and a blebby, pyrite-chalcopyrite assemblage with significant Co-As-rich pyrite. Both assemblages contain minor millerite and Ni-Co-As-sulfides. The mineralisation is Cu-, PPGE-, and Au-rich and IPGE-poor and the platinum group mineral assemblage is overwhelmingly dominated by Pd minerals; however, the bulk rock Pt/Pd ratio is around 0.8. Laser ablation analysis of the sulfides reveals that pyrite and the Ni-Co-sulfides are the primary host for Pt, which is present in solid solution in concentrations of up to 22 ppm in pyrite. Good correlations between all base and precious metals indicate very little hydrothermal remobilisation of metals despite some evidence of secondary pyrite and PGM. Sulfur isotope data indicate some crustal S in the magmatic sulfide assemblages. The source of this is unlikely to have been the local quartzites, but S-rich Dalradian sediments present at depth. The generation of magmatic Cu-Ni-PGE-Au mineralisation at Sron Garbh can be attributed to post-collisional slab drop off that allowed hydrous, low-degree partial melting to take place that produced a Cu-PPGE-Au-enriched melt, which ascended through the crust, assimilating crustal S from the Dalradian sediments. The presence of a number of PGE-enriched sulfide occurrences in appinitic intrusions across the Scottish Caledonides indicates that the region contains certain features that make it more prospective than other alkaline provinces worldwide, which may be linked the post-Caledonian slab drop off event. We propose that the incongruent melting of pre-existing magmatic sulfides or ‘refertilised’ mantle in low-degree partial melts can produce characteristically fractionated, Cu-PPGE-Au-semi metal bearing, hydrous, alkali melts, which, if they undergo sulfide saturation, have the potential to produce alkaline-hosted magmatic sulfide deposits
The Multifragmentation Freeze--Out Volume in Heavy Ion Collisions
The reduced velocity correlation function for fragments from the reaction Fe
+ Au at 100 A~MeV bombarding energy is investigated using the
dynamical--statistical approach QMD+SMM and compared to experimental data to
extract the Freeze--Out volume assuming simultaneous multifragmentation.Comment: 8 pages; 3 uuencoded figures available with figures command, LateX,
UCRL-J-1157
Vulnerability of CMOS image sensors in megajoule class laser harsh environment
CMOS image sensors (CIS) are promising candidates as part of optical imagers for the plasma diagnostics devoted to the study of fusion by inertial confinement. However, the harsh radiative environment of Megajoule Class Lasers threatens the performances of these optical sensors. In this paper, the vulnerability of CIS to the transient and mixed pulsed radiation environment associated with such facilities is investigated during an experiment at the OMEGA facility at the Laboratory for Laser Energetics (LLE), Rochester, NY, USA. The transient and permanent effects of the 14 MeV neutron pulse on CIS are presented. The behavior of the tested CIS shows that active pixel sensors (APS) exhibit a better hardness to this harsh environment than a CCD. A first order extrapolation of the reported results to the higher level of radiation expected for Megajoule Class Laser facilities (Laser Megajoule in France or National Ignition Facility in the USA) shows that temporarily saturated pixels due to transient neutron-induced single event effects will be the major issue for the development of radiation-tolerant plasma diagnostic instruments whereas the permanent degradation of the CIS related to displacement damage or total ionizing dose effects could be reduced by applying well known mitigation techniques
An Early CD4+ T Cell–dependent Immunoglobulin A Response to Influenza Infection in the Absence of Key Cognate T–B Interactions
Contact-mediated interactions between CD4+ T cells and B cells are considered crucial for T cell–dependent B cell responses. To investigate the ability of activated CD4+ T cells to drive in vivo B cell responses in the absence of key cognate T–B interactions, we constructed radiation bone marrow chimeras in which CD4+ T cells would be activated by wild-type (WT) dendritic cells, but would interact with B cells that lacked expression of either major histocompatibility complex class II (MHC II) or CD40. B cell responses were assessed after influenza virus infection of the respiratory tract, which elicits a vigorous, CD4+ T cell–dependent antibody response in WT mice. The influenza-specific antibody response was strongly reduced in MHC II knockout and CD40 knockout mice. MHC II–deficient and CD40-deficient B cells in the chimera environment also produced little virus-specific immunoglobulin (Ig)M and IgG, but generated a strong virus-specific IgA response with virus-neutralizing activity. The IgA response was entirely influenza specific, in contrast to the IgG2a response, which had a substantial nonvirus-specific component. Our study demonstrates a CD4+ T cell–dependent, antiviral IgA response that is generated in the absence of B cell signaling via MHC II or CD40, and is restricted exclusively to virus-specific B cells
High-power, kilojoule laser interactions with near-critical density plasma
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98754/1/PhysPlasmas_18_056706.pd
Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging
The significance and nature of ion kinetic effects in D3He-filled, shock-driven inertial confinement
fusion implosions are assessed through measurements of fusion burn profiles. Over this series of
experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number,
NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma
conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match
measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured
the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially
resolved measurements of the fusion burn are used to examine kinetic ion transport effects in
greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional
integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison
of measured and simulated burn profiles shows that models including ion transport effects
are able to better match the experimental results. In implosions characterized by large Knudsen
numbers (NK3), the fusion burn profiles predicted by hydrodynamics simulations that exclude
ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally
observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that
includes a model of ion diffusion is able to qualitatively match the measured profile shapes.
Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the
observed trends, though further refinement of the models is needed for a more complete and
quantitative understanding of ion kinetic effects
The importance of initial-final state correlations for the formation of fragments in heavy ion collisions
Using quantum molecular dynamics simulations, we investigate the formation of
fragments in symmetric reactions between beam energies of E=30AMeV and 600AMeV.
After a comparison with existing data we investigate some observables relevant
to tackle equilibration: dsigma/dErat, the double differential cross section
dsigma/pt.dpz.dpt,... Apart maybe from very energetic E>400AMeV and very
central reactions, none of our simulations gives evidence that the system
passes through a state of equilibrium. Later, we address the production
mechanisms and find that, whatever the energy, nucleons finally entrained in a
fragment exhibit strong initial-final state correlations, in coordinate as well
as in momentum space. At high energy those correlations resemble the ones
obtained in the participant-spectator model. At low energy the correlations are
equally strong, but more complicated; they are a consequence of the Pauli
blocking of the nucleon-nucleon collisions, the geometry, and the excitation
energy. Studying a second set of time-dependent variables (radii,
densities,...), we investigate in details how those correlations survive the
reaction especially in central reactions where the nucleons have to pass
through the whole system. It appears that some fragments are made of nucleons
which were initially correlated, whereas others are formed by nucleons
scattered during the reaction into the vicinity of a group of previously
correlated nucleons.Comment: 45 pages text + 20 postscript figures Accepted for publication in
Physical Review
quasiharmonic equations of state for dynamically-stabilized soft-mode materials
We introduce a method for treating soft modes within the analytical framework
of the quasiharmonic equation of state. The corresponding double-well
energy-displacement relation is fitted to a functional form that is harmonic in
both the low- and high-energy limits. Using density-functional calculations and
statistical physics, we apply the quasiharmonic methodology to solid periclase.
We predict the existence of a B1--B2 phase transition at high pressures and
temperatures
- …