4,358 research outputs found

    Control of Material Damping in High-Q Membrane Microresonators

    Full text link
    We study the mechanical quality factors of bilayer aluminum/silicon-nitride membranes. By coating ultrahigh-Q Si3N4 membranes with a more lossy metal, we can precisely measure the effect of material loss on Q's of tensioned resonator modes over a large range of frequencies. We develop a theoretical model that interprets our results and predicts the damping can be reduced significantly by patterning the metal film. Using such patterning, we fabricate Al-Si3N4 membranes with ultrahigh Q at room temperature. Our work elucidates the role of material loss in the Q of membrane resonators and informs the design of hybrid mechanical oscillators for optical-electrical-mechanical quantum interfaces

    A node-based smoothed conforming point interpolation method (NS-CPIM) for elasticity problems

    Get PDF
    This paper formulates a node-based smoothed conforming point interpolation method (NS-CPIM) for solid mechanics. In the proposed NS-CPIM, the higher order conforming PIM shape functions (CPIM) have been constructed to produce a continuous and piecewise quadratic displacement field over the whole problem domain, whereby the smoothed strain field was obtained through smoothing operation over each smoothing domain associated with domain nodes. The smoothed Galerkin weak form was then developed to create the discretized system equations. Numerical studies have demonstrated the following good properties: NS-CPIM (1) can pass both standard and quadratic patch test; (2) provides an upper bound of strain energy; (3) avoid the volumetric locking; (4) provides the higher accuracy than those in the node-based smoothed schemes of the original PIMs

    Pressure coefficients of Raman modes of carbon nanotubes resolved by chirality: Environmental effect on graphene sheet

    Get PDF
    Studies of the mechanical properties of single-walled carbon nanotubes are hindered by the availability only of ensembles of tubes with a range of diameters. Tunable Raman excitation spectroscopy picks out identifiable tubes. Under high pressure, the radial breathing mode shows a strong environmental effect shown here to be largely independent of the nature of the environment . For the G-mode, the pressure coefficient varies with diameter consistent with the thick-wall tube model. However, results show an unexpectedly strong environmental effect on the pressure coefficients. Reappraisal of data for graphene and graphite gives the G-mode Grueuneisen parameter gamma = 1.34 and the shear deformation parameter beta = 1.34.Comment: Submitted to Physical Review

    Is it possible to assign physical meaning to field theory with higher derivatives?

    Full text link
    To overcome the difficulties with the energy indefiniteness in field theories with higher derivatives, it is supposed to use the mechanical analogy, the Timoshenko theory of the transverse flexural vibrations of beams or rods well known in mechanical engineering. It enables one to introduce the notion of a "mechanical" energy in such field models that is wittingly positive definite. This approach can be applied at least to the higher derivative models which effectively describe the extended localized solutions in usual first order field theories (vortex solutions in Higgs models and so on). Any problems with a negative norm ghost states and unitarity violation do not arise here.Comment: 16 pp, LaTeX, JINR E2-93-19

    A Measurement of Newton's Gravitational Constant

    Get PDF
    A precision measurement of the gravitational constant GG has been made using a beam balance. Special attention has been given to determining the calibration, the effect of a possible nonlinearity of the balance and the zero-point variation of the balance. The equipment, the measurements and the analysis are described in detail. The value obtained for G is 6.674252(109)(54) 10^{-11} m3 kg-1 s-2. The relative statistical and systematic uncertainties of this result are 16.3 10^{-6} and 8.1 10^{-6}, respectively.Comment: 26 pages, 20 figures, Accepted for publication by Phys. Rev.

    Wetting layer thickness and early evolution of epitaxially strained thin films

    Full text link
    We propose a physical model which explains the existence of finite thickness wetting layers in epitaxially strained films. The finite wetting layer is shown to be stable due to the variation of the non-linear elastic free energy with film thickness. We show that anisotropic surface tension gives rise to a metastable enlarged wetting layer. The perturbation amplitude needed to destabilize this wetting layer decreases with increasing lattice mismatch. We observe the development of faceted islands in unstable films.Comment: 4 pages, 3 eps figure

    Stiffness modelling of parallelogram-based parallel manipulators

    Get PDF
    International audienceThe paper presents a methodology to enhance the stiffness analysis of parallel manipulators with parallelogram-based linkage. It directly takes into account the influence of the external loading and allows computing both the non-linear ``load-deflection" relation and relevant rank-deficient stiffness matrix. An equivalent bar-type pseudo-rigid model is also proposed to describe the parallelogram stiffness by means of five mutually coupled virtual springs. The contributions of this paper are highlighted with a parallelogram-type linkage used in a manipulator from the Orthoglide family

    Wavelet treatment of the intra-chain correlation functions of homopolymers in dilute solutions

    Full text link
    Discrete wavelets are applied to parametrization of the intra-chain two-point correlation functions of homopolymers in dilute solutions obtained from Monte Carlo simulation. Several orthogonal and biorthogonal basis sets have been investigated for use in the truncated wavelet approximation. Quality of the approximation has been assessed by calculation of the scaling exponents obtained from des Cloizeaux ansatz for the correlation functions of homopolymers with different connectivities in a good solvent. The resulting exponents are in a better agreement with those from the recent renormalisation group calculations as compared to the data without the wavelet denoising. We also discuss how the wavelet treatment improves the quality of data for correlation functions from simulations of homopolymers at varied solvent conditions and of heteropolymers.Comment: RevTeX, 19 pages, 7 PS figures. Accepted for publication in PR

    Local probing of ionic diffusion by electrochemical strain microscopy: spatial resolution and signal formation mechanisms

    Full text link
    Electrochemical insertion-deintercalation reactions are typically associated with significant change of molar volume of the host compound. This strong coupling between ionic currents and strains underpins image formation mechanisms in electrochemical strain microscopy (ESM), and allows exploring the tip-induced electrochemical processes locally. Here we analyze the signal formation mechanism in ESM, and develop the analytical description of operation in frequency and time domains. The ESM spectroscopic modes are compared to classical electrochemical methods including potentiostatic and galvanostatic intermittent titration (PITT and GITT), and electrochemical impedance spectroscopy (EIS). This analysis illustrates the feasibility of spatially resolved studies of Li-ion dynamics on the sub-10 nanometer level using electromechanical detection.Comment: 49 pages, 17 figures, 4 tables, 3 appendices, to be submitted to J. Appl. Phys

    Early Stages of Homopolymer Collapse

    Full text link
    Interest in the protein folding problem has motivated a wide range of theoretical and experimental studies of the kinetics of the collapse of flexible homopolymers. In this Paper a phenomenological model is proposed for the kinetics of the early stages of homopolymer collapse following a quench from temperatures above to below the theta temperature. In the first stage, nascent droplets of the dense phase are formed, with little effect on the configurations of the bridges that join them. The droplets then grow by accreting monomers from the bridges, thus causing the bridges to stretch. During these two stages the overall dimensions of the chain decrease only weakly. Further growth of the droplets is accomplished by the shortening of the bridges, which causes the shrinking of the overall dimensions of the chain. The characteristic times of the three stages respectively scale as the zeroth, 1/5 and 6/5 power of the the degree of polymerization of the chain.Comment: 11 pages, 3 figure
    corecore