77,695 research outputs found
Modelling of selection and mating decisions in tree breeding programs
Hardwood trees from the temperate forests of southern Australia are an important source of timber for high quality paper. Two species in particular, Eucalyptus globulus and Eucalyptus nitens are well suited to this purpose and are now widely grown in commercial plantations. These plantations have been established by professional tree breeders using seedlings derived originally from broadly based collection of seed in natural forests. To increase productivity it is desirable to select trees that grow quickly and give high yields of top quality timber. Nevertheless it is important to maintain genetic diversity in the breeding population and thereby retain a robust capacity to adapt to changing environmental factors. In this article we formulate a number of related mathematical models for the selection and mating processes and discuss the consequences of these models. We recommend a relatively simple scheme which can be implemented on an IBM compatible PC using standard algorithms
The Power of Posner: A Study of Prestige and Influence in the Federal Judiciary
Some judges have a disproportionate influence over the American judiciary; existing research has shown Judge Richard Posner is one of those judges. Our goal was to identify and determine how Judge Posner’s influence has changed over time. To measure and track his influence, we collected and compared citation and invocation data from three distinct time frames. While these measurements are imperfect, they can help illustrate the level of influence and prestige Judge Posner enjoys. The existing literature led us to expect Judge Posner’s early citation rates to be low. After several years on the bench, the citation rates for each opinion should rise dramatically. By contrast, Judge Posner’s citation rates are exceptionally high from the outset while more recent opinions actually have lower citation rates
The Giant Flare of 1998 August 27 from SGR 1900+14: II. Radiative Mechanism and Physical Constraints on the Source
(ABBREVIATED) The extraordinary 1998 August 27 giant flare places strong
constraints on the physical properties of its source, SGR 1900+14. We make
detailed comparisons of the published data with the magnetar model. The giant
flare evolved through three stages, whose radiative mechanisms we address in
turn. A triggering mechanism is proposed, whereby a helical distortion of the
core magnetic field induces large-scale fracturing in the crust and a twisting
deformation of the crust and exterior magnetic field. The envelope of the
pulsating tail of the August 27 flare can be accurately fit, after ~40 s, by
the contracting surface of a relativistically hot, but inhomogeneous, trapped
fireball. We quantify the effects of direct neutrino-pair emission, thereby
deducing a lower bound ~ 10^{32} G-cm^3 to the magnetic moment of the confining
field. The radiative flux during the intermediate ~40 s of the burst appears to
exceed the trapped fireball fit. The spectrum and lightcurve of this smooth
tail are consistent with heating in an extended pair corona, possibly powered
by continuing seismic activity in the star. We consider in detail the critical
luminosity, below which a stable balance can be maintained between heating and
radiative cooling in a confined, magnetized pair plasma; but above which the
confined plasma runs away to local thermodynamic equilibrium. In the later
pulsating tail, the best fit temperature equilibrates at a value which agrees
well with the regulating effect of photon splitting. The remarkable four-peaked
substructure within each 5.16-s pulse provides strong evidence for the presence
of higher magnetic multipoles in SGR 1900+14. The corresponding collimation of
the X-ray flux is related to radiative transport in a super-QED magnetic field.Comment: 11 July 2001, accepted for publication in the Astrophysical Journa
A Personalized System for Conversational Recommendations
Searching for and making decisions about information is becoming increasingly
difficult as the amount of information and number of choices increases.
Recommendation systems help users find items of interest of a particular type,
such as movies or restaurants, but are still somewhat awkward to use. Our
solution is to take advantage of the complementary strengths of personalized
recommendation systems and dialogue systems, creating personalized aides. We
present a system -- the Adaptive Place Advisor -- that treats item selection as
an interactive, conversational process, with the program inquiring about item
attributes and the user responding. Individual, long-term user preferences are
unobtrusively obtained in the course of normal recommendation dialogues and
used to direct future conversations with the same user. We present a novel user
model that influences both item search and the questions asked during a
conversation. We demonstrate the effectiveness of our system in significantly
reducing the time and number of interactions required to find a satisfactory
item, as compared to a control group of users interacting with a non-adaptive
version of the system
Steady-state attitude control propulsion systems computer program documentation and user's manual, volume 1
Computer program documentation and user manual for steady state attitude control propulsion system - vol.
Nature of fault planes in solid neutron star matter
The properties of tectonic earthquake sources are compared with those deduced
here for fault planes in solid neutron-star matter. The conclusion that
neutron-star matter cannot exhibit brittle fracture at any temperature or
magnetic field is significant for current theories of pulsar glitches, and of
the anomalous X-ray pulsars and soft-gamma repeaters.Comment: 5 AAS LaTeX pages 1 eps figur
- …