70 research outputs found

    Cervical cancer cell lines expressing NKG2D-ligands are able to down-modulate the NKG2D receptor on NKL cells with functional implications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cervical cancer represents the third most commonly diagnosed cancer and the fourth leading cause of cancer-related deaths in women worldwide. Natural killer (NK) cells play an important role in the defense against viruses, intracellular bacteria and tumors. NKG2D, an activating receptor on NK cells, recognizes MHC class I chain-related molecules, such as MICA/B and members of the ULBP/RAET1 family. Tumor-derived soluble NKG2D-ligands have been shown to down-modulate the expression of NKG2D on NK cells. In addition to the down-modulation induced by soluble NKG2D-ligands, it has recently been described that persistent cell-cell contact can also down-modulate NKG2D expression. The goal of this study was to determine whether the NKG2D receptor is down-modulated by cell-cell contact with cervical cancer cells and whether this down-modulation might be associated with changes in NK cell activity.</p> <p>Results</p> <p>We demonstrate that NKG2D expressed on NKL cells is down-modulated by direct cell contact with cervical cancer cell lines HeLa, SiHa, and C33A, but not with non-tumorigenic keratinocytes (HaCaT). Moreover, this down-modulation had functional implications. We found expression of NKG2D-ligands in all cervical cancer cell lines, but the patterns of ligand distribution were different in each cell line. Cervical cancer cell lines co-cultured with NKL cells or fresh NK cells induced a marked diminution of NKG2D expression on NKL cells. Additionally, the cytotoxic activity of NKL cells against K562 targets was compromised after co-culture with HeLa and SiHa cells, while co-culture with C33A increased the cytotoxic activity of the NKL cells.</p> <p>Conclusions</p> <p>Our results suggest that differential expression of NKG2D-ligands in cervical cancer cell lines might be associated with the down-modulation of NKG2D, as well as with changes in the cytotoxic activity of NKL cells after cell-cell contact with the tumor cells.</p

    MEIS1, PREP1, and PBX4 Are Differentially Expressed in Acute Lymphoblastic Leukemia: Association of MEIS1 Expression with Higher Proliferation and Chemotherapy Resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Three-amino acid-loop-extension (<it>TALE</it>) superfamily of homeodomain-containing transcription factors have been implicated in normal hematopoiesis and in leukemogenesis and are important survival, differentiation, and apoptosis pathway modulators. In this work, we determined the expression levels of <it>TALE </it>genes in leukemic-derived cell lines, in blood samples of patients with Acute lymphoblastic leukemia (ALL), and in the blood samples of healthy donors.</p> <p>Results</p> <p>Here we show increased expression of <it>MEIS1, MEIS2, </it>and <it>PREP1 </it>genes in leukemia-derived cell lines compared with blood normal cells. High levels of <it>MEIS1 </it>and <it>PREP1</it>, and low levels of <it>PBX4 </it>expression were also founded in samples of patients with ALL. Importantly, silencing of <it>MEIS1 </it>decreases the proliferation of leukemia-derived cells but increases their survival after etoposide treatment. Etoposide-induced apoptosis induces down-regulation of MEIS1 expression or <it>PREP1 </it>up-regulation in chemotherapy-resistant cells.</p> <p>Conclusions</p> <p>Our results indicate that up-regulation of <it>MEIS1 </it>is important for sustaining proliferation of leukemic cells and that down-regulation of <it>MEIS1 </it>or up-regulation of <it>PREP1 </it>and <it>PBX </it>genes could be implicated in the modulation of the cellular response to chemotherapeutic-induced apoptosis.</p

    A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress.

    Get PDF
    Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation

    Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Persistent high risk HPV infection can lead to cervical cancer, the second most common malignant tumor in women worldwide. NK cells play a crucial role against tumors and virus-infected cells through a fine balance between activating and inhibitory receptors. Expression of triggering receptors NKp30, NKp44, NKp46 and NKG2D on NK cells correlates with cytolytic activity against tumor cells, but these receptors have not been studied in cervical cancer and precursor lesions. The aim of the present work was to study NKp30, NKp46, NKG2D, NKp80 and 2B4 expression in NK cells from patients with cervical cancer and precursor lesions, in the context of HPV infection.</p> <p>Methods</p> <p>NKp30, NKp46, NKG2D, NKp80 and 2B4 expression was analyzed by flow cytometry on NK cells from 59 patients with cervical cancer and squamous intraepithelial lesions. NK cell cytotoxicity was evaluated in a 4 hour CFSE/7-AAD flow cytometry assay. HPV types were identified by PCR assays.</p> <p>Results</p> <p>We report here for the first time that NK cell-activating receptors NKp30 and NKp46 are significantly down-regulated in cervical cancer and high grade squamous intraepithelial lesion (HGSIL) patients. NCRs down-regulation correlated with low cytolytic activity, HPV-16 infection and clinical stage. NKG2D was also down-regulated in cervical cancer patients.</p> <p>Conclusion</p> <p>Our results suggest that NKp30, NKp46 and NKG2D down-regulation represent an evasion mechanism associated to low NK cell activity, HPV-16 infection and cervical cancer progression.</p

    Effects of luteectomy in early pregnancy on the maintenance of gestation and plasma progesterone concentrations in the viviparous temperate lizard Barisia imbricata imbricata

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have shown that the corpus luteum is the principal source of progesterone during the gravidity period in reptiles; however, its participation in the maintenance of gestation in the viviparous squamata is in dispute. The effects of ovariectomy or luteectomy vary according to the species and the time at which the procedure is performed. In this paper, we describe the effects of luteectomy during early pregnancy on the maintenance of gestation and progesterone concentrations in the temperate Mexican viviparous lizard <it>Barisia imbricata imbricata.</it></p> <p>Methods</p> <p>Twenty-four lizards were subjected to three different treatments: luteectomy, sham luteectomy or non-surgical treatment, and blood samples were obtained before and after surgical treatment at different stages of gestation to determine the effects of luteectomy on the maintenance of gestation and progesterone concentrations.</p> <p>Results</p> <p>Spontaneous abortion was not observed in any of the females. However, luteectomy provoked abnormal parturition and a significant reduction in the number of young born alive. Parturition was normal in untreated females as well as those submitted to sham luteectomy. The surgical treatment also caused a significant reduction in progesterone concentrations in luteectomised females during early and middle gestation. However, no significant differences in hormone concentrations were observed among the three groups during late gestation or immediately post-parturition.</p> <p>Conclusions</p> <p>Our observations indicate that the presence of the corpus luteum is not necesary for the maintenance of gestation, but that it does participate in parturition control. Moreover, the corpus luteum of the viviparous lizard <it>B. i. imbricata</it> produces progesterone, at least during the first half of pregnancy, and that an extra-ovarian source of progesterone must maintain gestation in the absence of luteal tissue.</p

    Apoptosis induction in Jurkat cells and sCD95 levels in women's sera are related with the risk of developing cervical cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently, there is clear evidence that apoptosis plays an important role in the development and progression of tumors. One of the best characterized apoptosis triggering systems is the CD95/Fas/APO-1 pathway; previous reports have demonstrated high levels of soluble CD95 (sCD95) in serum of patients with some types of cancer. Cervical cancer is the second most common cancer among women worldwide. As a first step in an attempt to design a minimally invasive test to predict the risk of developing cervical cancer in patients with precancerous lesions, we used a simple assay based on the capacity of human serum to induce apoptosis in Jurkat cells. We evaluated the relationship between sCD95 levels and the ability to induce apoptosis in Jurkat cells in cervical cancer patients and controls.</p> <p>Methods</p> <p>Jurkat cells were exposed to serum from 63 women (20 healthy volunteers, 21 with cervical intraepithelial neoplasia grade I [CIN 1] and 22 with cervical-uterine carcinoma). The apoptotic rate was measured by flow cytometry using Annexin-V-Fluos and Propidium Iodide as markers. Serum levels of sCD95 and soluble CD95 ligand (sCD95L) were measured by ELISA kits.</p> <p>Results</p> <p>We found that serum from almost all healthy women induced apoptosis in Jurkat cells, while only fifty percent of the sera from women with CIN 1 induced cell death in Jurkat cells. Interestingly, only one serum sample from a patient with cervical-uterine cancer was able to induce apoptosis, the rest of the sera protected Jurkat cells from this killing. We were able to demonstrate that elimination of Jurkat cells was mediated by the CD95/Fas/Apo-1 apoptotic pathway. Furthermore, the serum levels of sCD95 measured by ELISA were significantly higher in women with cervical cancer.</p> <p>Conclusion</p> <p>Our results demonstrate that there is a strong correlation between low levels of sCD95 in serum of normal women and higher apoptosis induction in Jurkat cells. We suggest that an analysis of the apoptotic rate induced by serum in Jurkat cells and the levels of sCD95 in serum could be helpful during the prognosis and treatment of women detected with precancerous lesions or cervical cancer.</p

    COVID-19 severity and mortality in patients with chronic lymphocytic leukemia: a joint study by ERIC, the European Research Initiative on CLL, and CLL Campus

    Get PDF
    Chronic lymphocytic leukemia (CLL) is a disease of the elderly, characterized by immunodeficiency. Hence, patients with CLL might be considered more susceptible to severe complications from COVID-19. We undertook this retrospective international multicenter study to characterize the course of COVID-19 in patients with CLL and identify potential predictors of outcome. Of 190 patients with CLL and confirmed COVID-19 diagnosed between 28/03/2020 and 22/05/2020, 151 (79%) presented with severe COVID-19 (need of oxygen and/or intensive care admission). Severe COVID-19 was associated with more advanced age (≄65 years) (odds ratio 3.72 [95% CI 1.79–7.71]). Only 60 patients (39.7%) with severe COVID-19 were receiving or had recent (≀12 months) treatment for CLL at the time of COVID-19 versus 30/39 (76.9%) patients with mild disease. Hospitalization rate for severe COVID-19 was lower (p &lt; 0.05) for patients on ibrutinib versus those on other regimens or off treatment. Of 151 patients with severe disease, 55 (36.4%) succumbed versus only 1/38 (2.6%) with mild disease; age and comorbidities did not impact on mortality. In CLL, (1) COVID-19 severity increases with age; (2) antileukemic treatment (particularly BTK inhibitors) appears to exert a protective effect; (3) age and comorbidities did not impact on mortality, alluding to a relevant role of CLL and immunodeficiency

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Ultrafine grained plates of Al-Mg-Si alloy obtained by Incremental Equal Channel Angular Pressing : microstructure and mechanical properties

    Get PDF
    In this study, an Al-Mg-Si alloy was processed using via Incremental Equal Channel Angular Pressing (I-ECAP) in order to obtain homogenous, ultrafine grained plates with low anisotropy of the mechanical properties. This was the first attempt to process an Al-Mg-Si alloy using this technique. Samples in the form of 3 mm-thick square plates were subjected to I-ECAP with the 90˚ rotation around the axis normal to the surface of the plate between passes. Samples were investigated first in their initial state, then after a single pass of I-ECAP and finally after four such passes. Analyses of the microstructure and mechanical properties demonstrated that the I-ECAP method can be successfully applied in Al-Mg-Si alloys. The average grain size decreased from 15 - 19 ”m in the initial state to below 1 ”m after four I-ECAP passes. The fraction of high angle grain boundaries in the sample subjected to four I-ECAP passes lay within 53-57 % depending on the examined plane. The mechanism of grain refinement in Al-Mg-Si alloy was found to be distinctly different from that in pure aluminium with the grain rotation being more prominent than the grain subdivision, which was attributed to lower stacking fault energy and the reduced mobility of dislocations in the alloy. The ultimate tensile strength increased more than twice, whereas the yield strength - more than threefold. Additionally, the plates processed by I-ECAP exhibited low anisotropy of mechanical properties (in plane and across the thickness) in comparison to other SPD processing methods, which makes them attractive for further processing and applications
    • 

    corecore