98,876 research outputs found
On monotone circuits with local oracles and clique lower bounds
We investigate monotone circuits with local oracles [K., 2016], i.e.,
circuits containing additional inputs that can perform
unstructured computations on the input string . Let be
the locality of the circuit, a parameter that bounds the combined strength of
the oracle functions , and
be the set of -cliques and the set of complete -partite graphs,
respectively (similarly to [Razborov, 1985]). Our results can be informally
stated as follows.
1. For an appropriate extension of depth- monotone circuits with local
oracles, we show that the size of the smallest circuits separating
(triangles) and (complete bipartite graphs) undergoes two phase
transitions according to .
2. For , arbitrary depth, and , we
prove that the monotone circuit size complexity of separating the sets
and is , under a certain restrictive
assumption on the local oracle gates.
The second result, which concerns monotone circuits with restricted oracles,
extends and provides a matching upper bound for the exponential lower bounds on
the monotone circuit size complexity of -clique obtained by Alon and Boppana
(1987).Comment: Updated acknowledgements and funding informatio
- β¦