8 research outputs found

    PREPARATION, EVALUATION AND STABILITY OF LAMIVUDINE LOADED ALGINATE-TAMARIND MUCILAGE MICROSPHERES

    Get PDF
    Objective: The objective of the present study was to investigate the possibility of obtaining a controlled, relatively constant effective level of lamivudine microspheres. Methods: Lamivudine loaded sodium alginate (SA) and tamarind mucilage(TM) mucoadhesive microspheres were prepared by ionic gelation technique with three different proportions of SA and TM with different concentrations of CaCl2. The prepared microspheres were evaluated for drug loading, particle size distribution, surface morphology, FTIR, in vitro wash off, in vitro release and stability studies. Results: The microspheres were found to be free flowing having diameter ranging from 769.22 to 978.56 µm, drug encapsulation efficiency (DEE) was found to be 65.28 to 92.33%. Percent drug release after 12 h were ranging from 85±1.51 to 97±1.44. In vitro release profile of all formulations shows slow controlled release up to 12 h. In vitro wash off studies shown fairly good mucoadhesivity with 20% microspheres adhered after 6h. Stability studies showed that no significant change in particle size and maximum DEE in comparison to the formulation stored at room temperature. Results: The lamivudine loaded SA-TM mucoadhesive microspheres can be conveniently prepared which showed better result and it may be used full for controlling the drug release and improve the bioavailability

    DESIGN AND OPTIMIZATION OF DOXORUBICIN HCL PRONIOSOMES BY-DESIGN OF EXPERIMENT

    Get PDF
    Objective: The present research work was designed to formulate and optimize doxorubicin HCl proniosomes by design of experiment (DoE). Methods: A 4-factor, 3-level Box-Behnken design was used to explain multiple linear regression analysis and contour 3D plot responses. The independent variables selected were tween 20, cholesterol, hydration volume and sonication time; dependent variables percentage entrapment efficiency (PEE), mean vesicle size (MVS). Based on the Box-Behnken design 29 trial runs were studied and optimized for PEE and MVS. Further "Model F-Value" was calculated to confirm the omission of insignificant terms from the full-model equation to derive a multiple linear regression analysis to predict the PEE and MVS of niosomes derived from proniosomes. 3D plots were constructed to show the influence of independent variables on dependent variables. Results: PEE of doxorubicin HCl proniosomes was found to be in the range of 40.21-87.5%. The polynomial equation for PEE exhibited a good correlation coefficient (0.5524) and the "Model F-Value" of 7.41 implies the model is significant. P-values less than 0.0500 indicate model terms are significant. The MVS of doxorubicin HCl proniosomes was found to be in the range of 325.2 nm to 420.25 nm. The mathematical model generated for MVS (R2) was found to be significant with model F-value of 54.22. There is only a 0.01% chance that a "Model F-Value" this large could occur due to noise (P<0.0500) and R2 value of 0.9004. Conclusion: The DoE of Box-Behnken design demonstrated the role of the derived equation, 3D plot in predicting the values of dependent variables for the preparation and optimization of doxorubicin HCl proniosomes. The results suggest that doxorubicin HCl proniosomes can act as a promising carrier

    Chemical Penetration Enhancers for Transdermal Drug Delivery Systems

    Get PDF
    Skin as an important site of drug application for both local and systemic effects. However in skin, the stratum corneum is the main barrier for drug penetration. Penetration enhancement technology is a challenging development that would increase the number of drugs available for transdermal administration. The permeation of drug through skin can be enhanced by both chemical penetration enhancement and physical methods. In this review, we have discussed the chemical penetration enhancement technology for transdermal drug delivery as well as the probable mechanisms of action

    Chemical Penetration Enhancers for Transdermal Drug Delivery Systems

    No full text
    Skin as an important site of drug application for both local and systemic effects. However in skin, the stratum corneum is the main barrier for drug penetration. Penetration enhancement technology is a challenging development that would increase the number of drugs available for transdermal administration. The permeation of drug through skin can be enhanced by both chemical penetration enhancement and physical methods. In this review, we have discussed the chemical penetration enhancement technology for transdermal drug delivery as well as the probable mechanisms of action

    Development and Characterization of Enteric-Coated Immediate-Release Pellets of Aceclofenac by Extrusion/Spheronization Technique Using Îş-Carrageenan as a Pelletizing Agent

    No full text
    In the present study, an attempt was made to prepare immediate-release enteric-coated pellets of aceclofenac, a poorly soluble nonsteroidal anti-inflammatory drug that has a gastrointestinal intolerance as its serious side effect. Formulation of enteric-coated pellets with improved solubility of aceclofenac could address both of these problems. To achieve these goals, pellets were prepared by extrusion–spheronization method using pelletizing agents that can contribute to the faster disintegration and thereby improve the solubility of the drug. Different disintegrants like β-cyclodextrin, kollidon CL, Ac-Di-Sol, and sodium starch glycolate were tried in order to further improve disintegration time. The pellets were characterized for drug content, particle size distribution, flow properties, infrared spectroscopy, surface morphology, disintegration rate, and dissolution profile. The formulations, which showed best disintegration and dissolution profiles, were coated with Eudragit L100-55, an enteric-coated polymer which does not dissolve at gastric pH but dissolves at intestinal pH, releasing the drug immediately in the dissolution medium. The optimized enteric-coated formulation containing 20% κ-carrageenan, lactose, and sodium starch glycolate as a disintegrant did inhibit the release of the drug for 2 h in 0.1 N HCl, whereas 87% of the drug was released within 45 min. The improvement was substantial when it was compared with solubility of pure drug under the same conditions. Thus, dissolution profiles suggested that combination of κ-carrageenan and sodium starch glycolate resulted into fast-disintegrating, immediate-release pellets, overcoming the bioavailability problem of the poorly soluble drug, aceclofenac, and enteric coating of these pellets avoids the exposure of aceclofenac to ulcer-prone areas of the gastrointestinal tract

    Development and Evaluation of Ethyl Cellulose-Based Transdermal Films of Furosemide for Improved In Vitro Skin Permeation

    No full text
    Transdermal films of the furosemide were developed employing ethyl cellulose and hydroxypropyl methylcellulose as film formers. The effect of binary mixture of polymers and penetration enhancers on physicochemical parameters including thickness, moisture content, moisture uptake, drug content, drug–polymer interaction, and in vitro permeation was evaluated. In vitro permeation study was conducted using human cadaver skin as penetration barrier in modified Keshary–Chein diffusion cell. In vitro skin permeation study showed that binary mixture, ethyl cellulose (EC)/hydroxypropyl methylcellulose (HPMC), at 8.5:1.5 ratio provided highest flux and also penetration enhancers further enhanced the permeation of drug, while propylene glycol showing higher enhancing effect compared to dimethyl sulfoxide and isopropyl myristate. Different kinetic models, used to interpret the release kinetics and mechanism, indicated that release from all formulations followed apparent zero-order kinetics and non-Fickian diffusion transport except formulation without HPMC which followed Fickian diffusion transport. Stability studies conducted as per International Conference on Harmonization guidelines did not show any degradation of drug. Based on the above observations, it can be reasonably concluded that blend of EC–HPMC polymers and propylene glycol are better suited for the development of transdermal delivery system of furosemide
    corecore