54 research outputs found
Origins of the slow and the ubiquitous fast solar wind
We present in this Letter the first coordinated radio occultation
measurements and ultraviolet observations of the inner corona below 5.5 Rs,
obtained during the Galileo solar conjunction in January 1997, to establish the
origin of the slow solar wind. Limits on the flow speed are derived from the
Doppler dimming of the resonantly scattered componentof the oxygen 1032 A and
1037 A lines as measured with the UltraViolet Coronagraph Spectrometer (UVCS)
on the Solar and Heliospheric Observatory (SOHO). White light images of the
corona from the Large Angle Spectroscopic Coronagraph (LASCO) on SOHO taken
simultaneously are used to place the Doppler radio scintillation and
ultraviolet measurements in the context ofcoronal structures. These combined
observations provide the first direct confirmation of the view recently
proposed by Woo and Martin (1997) that the slow solar wind is associated with
the axes, also known as stalks, of streamers. Furthermore, the ultraviolet
observations also show how the fast solar wind is ubiquitous in the inner
corona, and that a velocity shear between the fast and slow solar wind develops
along the streamer stalks.Comment: 15 pages, LaTex, 6 jpg figures, accepted Aug. 28, 1997 for
publication in the ApJ Letter
The Structure and Dynamics of the Upper Chromosphere and Lower Transition Region as Revealed by the Subarcsecond VAULT Observations
The Very high Angular resolution ULtraviolet Telescope (VAULT) is a sounding
rocket payload built to study the crucial interface between the solar
chromosphere and the corona by observing the strongest line in the solar
spectrum, the Ly-a line at 1216 {\AA}. In two flights, VAULT succeeded in
obtaining the first ever sub-arcsecond (0.5") images of this region with high
sensitivity and cadence. Detailed analyses of those observations have
contributed significantly to new ideas about the nature of the transition
region. Here, we present a broad overview of the Ly-a atmosphere as revealed by
the VAULT observations, and bring together past results and new analyses from
the second VAULT flight to create a synthesis of our current knowledge of the
high-resolution Ly-a Sun. We hope that this work will serve as a good reference
for the design of upcoming Ly-a telescopes and observing plans.Comment: 28 pages, 11 figure
Waves and Magnetism in the Solar Atmosphere (WAMIS)
Comprehensive measurements of magnetic fields in the solar corona have a long history as an important scientific goal. Besides being crucial to understanding coronal structures and the Sun's generation of space weather, direct measurements of their strength and direction are also crucial steps in understanding observed wave motions. In this regard, the remote sensing instrumentation used to make coronal magnetic field measurements is well suited to measuring the Doppler signature of waves in the solar structures. In this paper, we describe the design and scientific values of the Waves and Magnetism in the Solar Atmosphere (WAMIS) investigation. WAMIS, taking advantage of greatly improved infrared filters and detectors, forward models, advanced diagnostic tools and inversion codes, is a long-duration high-altitude balloon payload designed to obtain a breakthrough in the measurement of coronal magnetic fields and in advancing the understanding of the interaction of these fields with space plasmas. It consists of a 20 cm aperture coronagraph with a visible-IR spectro-polarimeter focal plane assembly. The balloon altitude would provide minimum sky background and atmospheric scattering at the wavelengths in which these observations are made. It would also enable continuous measurements of the strength and direction of coronal magnetic fields without interruptions from the day–night cycle and weather. These measurements will be made over a large field-of-view allowing one to distinguish the magnetic signatures of different coronal structures, and at the spatial and temporal resolutions required to address outstanding problems in coronal physics. Additionally, WAMIS could obtain near simultaneous observations of the electron scattered K-corona for context and to obtain the electron density. These comprehensive observations are not provided by any current single ground-based or space observatory. The fundamental advancements achieved by the near-space observations of WAMIS on coronal field would point the way for future ground based and orbital instrumentation
Waves and Magnetism in the Solar Atmosphere (WAMIS)
Magnetic fields in the solar atmosphere provide the energy for most varieties of solar activity, including high-energy electromagnetic radiation, solar energetic particles, flares, and coronal mass ejections, as well as powering the solar wind. Despite the fundamental role of magnetic fields in solar and heliospheric physics, there exist only very limited measurements of the field above the base of the corona. What is needed are direct measurements of not only the strength and orientation of the magnetic field but also the signatures of wave motions in order to better understand coronal structure, solar activity, and the role of MHD waves in heating
and accelerating the solar wind. Fortunately, the remote sensing instrumentation used to make magnetic field measurements is also well suited to measure the Doppler signature of waves in the solar structures. We present here a mission concept for the Waves And Magnetism In the Solar Atmosphere (WAMIS) experiment which is proposed for a NASA long-duration balloon flight
LEMUR: Large European Module for solar Ultraviolet Research. European contribution to JAXA's Solar-C mission
Understanding the solar outer atmosphere requires concerted, simultaneous
solar observations from the visible to the vacuum ultraviolet (VUV) and soft
X-rays, at high spatial resolution (between 0.1" and 0.3"), at high temporal
resolution (on the order of 10 s, i.e., the time scale of chromospheric
dynamics), with a wide temperature coverage (0.01 MK to 20 MK, from the
chromosphere to the flaring corona), and the capability of measuring magnetic
fields through spectropolarimetry at visible and near-infrared wavelengths.
Simultaneous spectroscopic measurements sampling the entire temperature range
are particularly important.
These requirements are fulfilled by the Japanese Solar-C mission (Plan B),
composed of a spacecraft in a geosynchronous orbit with a payload providing a
significant improvement of imaging and spectropolarimetric capabilities in the
UV, visible, and near-infrared with respect to what is available today and
foreseen in the near future.
The Large European Module for solar Ultraviolet Research (LEMUR), described
in this paper, is a large VUV telescope feeding a scientific payload of
high-resolution imaging spectrographs and cameras. LEMUR consists of two major
components: a VUV solar telescope with a 30 cm diameter mirror and a focal
length of 3.6 m, and a focal-plane package composed of VUV spectrometers
covering six carefully chosen wavelength ranges between 17 and 127 nm. The
LEMUR slit covers 280" on the Sun with 0.14" per pixel sampling. In addition,
LEMUR is capable of measuring mass flows velocities (line shifts) down to 2
km/s or better.
LEMUR has been proposed to ESA as the European contribution to the Solar C
mission.Comment: 35 pages, 14 figures. To appear on Experimental Astronom
Physics of Solar Prominences: II - Magnetic Structure and Dynamics
Observations and models of solar prominences are reviewed. We focus on
non-eruptive prominences, and describe recent progress in four areas of
prominence research: (1) magnetic structure deduced from observations and
models, (2) the dynamics of prominence plasmas (formation and flows), (3)
Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and
large-scale patterns of the filament channels in which prominences are located.
Finally, several outstanding issues in prominence research are discussed, along
with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape
Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling
This review paper outlines background information and covers recent advances
made via the analysis of spectra and images of prominence plasma and the
increased sophistication of non-LTE (ie when there is a departure from Local
Thermodynamic Equilibrium) radiative transfer models. We first describe the
spectral inversion techniques that have been used to infer the plasma
parameters important for the general properties of the prominence plasma in
both its cool core and the hotter prominence-corona transition region. We also
review studies devoted to the observation of bulk motions of the prominence
plasma and to the determination of prominence mass. However, a simple inversion
of spectroscopic data usually fails when the lines become optically thick at
certain wavelengths. Therefore, complex non-LTE models become necessary. We
thus present the basics of non-LTE radiative transfer theory and the associated
multi-level radiative transfer problems. The main results of one- and
two-dimensional models of the prominences and their fine-structures are
presented. We then discuss the energy balance in various prominence models.
Finally, we outline the outstanding observational and theoretical questions,
and the directions for future progress in our understanding of solar
prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a
better resolution in the published version. New version reflects minor
changes brought after proof editin
- …