7,183 research outputs found

    Investigating the Structure of the Windy Torus in Quasars

    Full text link
    Thermal mid-infrared emission of quasars requires an obscuring structure that can be modeled as a magneto-hydrodynamic wind in which radiation pressure on dust shapes the outflow. We have taken the dusty wind models presented by Keating and collaborators that generated quasar mid-infrared spectral energy distributions (SEDs), and explored their properties (such as geometry, opening angle, and ionic column densities) as a function of Eddington ratio and X-ray weakness. In addition, we present new models with a range of magnetic field strengths and column densities of the dust-free shielding gas interior to the dusty wind. We find this family of models -- with input parameters tuned to accurately match the observed mid-IR power in quasar SEDs -- provides reasonable values of the Type 1 fraction of quasars and the column densities of warm absorber gas, though it does not explain a purely luminosity-dependent covering fraction for either. Furthermore, we provide predictions of the cumulative distribution of E(B-V) values of quasars from extinction by the wind and the shape of the wind as imaged in the mid-infrared. Within the framework of this model, we predict that the strength of the near-infrared bump from hot dust emission will be correlated primarily with L/L_Edd rather than luminosity alone, with scatter induced by the distribution of magnetic field strengths. The empirical successes and shortcomings of these models warrant further investigations into the composition and behaviour of dust and the nature of magnetic fields in the vicinity of actively accreting supermassive black holes.Comment: 11 pages, 6 figures, accepted for publication in MNRA

    What Makes Educational Campaings Succeed?

    Get PDF
    PDF pages:

    Issues Related to the Provision of Emergency Shelter in Drought Conditions

    Get PDF
    Building Materials/Selection Criteria Climatic. (300.1)The digital Cuny Archive was made available in part through funding assistance from USAID.In the immediate past, as well as in the present, there have been major drought relief operations in Africa. Although the area most affected has been those countries in the Sahel region, others such as Kenya, Tanzania,Ethiopia and Somalia have also experienced drought of such magnitude that massive relief programs were initiated. A major facet of these operations has been the provision of food and water to the victims of the drought. Later, aid is often used to assist drought victims in replenishing animal herds, acquiring seed for crops, improving water sources, etc. Several agencies have also proposed emergency shelter and housing programs for the victims. This paper explores the issues related to the provision of emergency shelter under drought conditions and the impact of such programs in a long-term context

    Fatigue crack initiation and small crack growth in several airframe alloys

    Get PDF
    The growth of naturally-initiated small cracks under a variety of constant amplitude and variable amplitude load sequences is examined for several airframe materials: the conventional aluminum alloys, 2024-T3 and 7075-T6, the aluminum-lithium alloy, 2090-T8E41, and 4340 steel. Loading conditions investigated include constant amplitude loading at R = 0.5, 0, -1 and -2 and the variable amplitude sequences FALSTAFF, Mini-TWIST and FELIX/28. Crack growth was measured at the root of semicircular edge notches using acetate replicas. Crack growth rates are compared on a stress intensity factor basis, to those for large cracks to evaluate the extent of the small crack effect in each alloy. In addition, the various alloys are compared on a crack initiation and crack growth morphology basis

    Time dependent CP asymmetry in B0ρ0γB^0 \to \rho^0 \gamma decay to probe the origin of CP violation

    Full text link
    Since the CP violation in the BB system has been investigated up to now only through processes related to the BB--Bˉ\bar{B} mixing, urgently required is new way of study for the CP violation and establishing its origin in the BB system independent of the mixing process. In this work, we explore the exclusive B0ρ0γ B^0 \to \rho^0 \gamma decay to obtain the time-dependent CP asymmetry in bdb \to d decay process in the standard model and the supersymmetric model. We find that the complex RL and RR mass insertion to the squark sector in the MSSM can lead to a large CP asymmetry in bdγb \to d \gamma decay through the gluino-squark diagrams, which is not predicted in the Standard Model induced by the BB--Bˉ\bar{B} mixing.Comment: 10 pages, 4 eps figure

    Fundamental limitations on "warp drive" spacetimes

    Full text link
    "Warp drive" spacetimes are useful as "gedanken-experiments" that force us to confront the foundations of general relativity, and among other things, to precisely formulate the notion of "superluminal" communication. We verify the non-perturbative violation of the classical energy conditions of the Alcubierre and Natario warp drive spacetimes and apply linearized gravity to the weak-field warp drive, testing the energy conditions to first and second order of the non-relativistic warp-bubble velocity. We are primarily interested in a secondary feature of the warp drive that has not previously been remarked upon, if it could be built, the warp drive would be an example of a "reaction-less drive". For both the Alcubierre and Natario warp drives we find that the occurrence of significant energy condition violations is not just a high-speed effect, but that the violations persist even at arbitrarily low speeds. An interesting feature of this construction is that it is now meaningful to place a finite mass spaceship at the center of the warp bubble, and compare the warp field energy with the mass-energy of the spaceship. There is no hope of doing this in Alcubierre's original version of the warp-field, since by definition the point in the center of the warp bubble moves on a geodesic and is "massless". That is, in Alcubierre's original formalism and in the Natario formalism the spaceship is always treated as a test particle, while in the linearized theory we can treat the spaceship as a finite mass object. For both the Alcubierre and Natario warp drives we find that even at low speeds the net (negative) energy stored in the warp fields must be a significant fraction of the mass of the spaceship.Comment: 18 pages, Revtex4. V2: one reference added, some clarifying comments and discussion, no physics changes, accepted for publication in Classical and Quantum Gravit

    The unphysical nature of "Warp Drive"

    Get PDF
    We will apply the quantum inequality type restrictions to Alcubierre's warp drive metric on a scale in which a local region of spacetime can be considered ``flat''. These are inequalities that restrict the magnitude and extent of the negative energy which is needed to form the warp drive metric. From this we are able to place limits on the parameters of the ``Warp Bubble''. It will be shown that the bubble wall thickness is on the order of only a few hundred Planck lengths. Then we will show that the total integrated energy density needed to maintain the warp metric with such thin walls is physically unattainable.Comment: 11 pages, 3 figures, latex. This revision corrects a typographical sign error in Eq. (3
    corecore