1,785 research outputs found

    Innate immune pathways associated with lung radioprotection by soy isoflavones

    Get PDF
    Introduction: Radiation therapy for lung cancer causes pneumonitis and fibrosis. Soy isoflavones protect against radiation-induced lung injury, but the mediators of radio- protection remain unclear. We investigated the effect of radiation on myeloid-derived suppressor cells (MDSCs) in the lung and their modulation by soy isoflavones for a potential role in protection from radiation-induced lung injury. Methods: BALB/c mice (5–6 weeks old) received a single 10 Gy dose of thoracic irra- diation and soy isoflavones were orally administrated daily before and after radiation at 1 mg/day. Arginase-1 (Arg-1) and nuclear factor κB (NF-κB) p65 were detected in lung tissue by western blot analysis and immunohistochemistry. Lung MDSC subsets and their Arg-1 expression were analyzed by flow cytometry. Cytokine levels in the lungs were measured by ELISA. Results: At 1 week after radiation, CD11b+ cells expressing Arg-1 were decreased by radiation in lung tissue yet maintained in the lungs treated with radiation and soy isoflavones. Arg-1 was predominantly expressed by CD11b+Ly6ClowLy6G+ granulocytic MDSCs (gr-MDSCs). Arg-1 expression in gr-MDSCs was reduced by radiation and preserved by supplementation with soy isoflavones. A persistent increase in Arg-1+ cells was observed in lung tissue treated with combined radiation and soy isoflavones at early and late time points, compared to radiation alone. The increase in Arg-1 expression mediated by soy isoflavones could be associated with the inhibition of radiation-induced activation of NF-κB and the control of pro-inflammatory cytokine production demon- strated in this study. Conclusion: A radioprotective mechanism of soy isoflavones may involve the promotion of Arg-1-expressing gr-MDSCs that could play a role in downregulation of inflammation and lung radioprotection

    Anharmonic Origin of the Giant Thermal Expansion of NaBr

    Get PDF
    All phonons in a single crystal of NaBr are measured by inelastic neutron scattering at temperatures of 10, 300, and 700 K. Even at 300 K, the phonons, especially the longitudinal-optical phonons, show large shifts in frequencies and show large broadenings in energy owing to anharmonicity. Ab initio computations are first performed with the quasiharmonic approximation (QHA) in which the phonon frequencies depend only on V and on T only insofar as it alters V by thermal expansion. This QHA is an unqualified failure for predicting the temperature dependence of phonon frequencies, even 300 K, and the thermal expansion is in error by a factor of 4. Ab initio computations that include both anharmonicity and quasiharmonicity successfully predict both the temperature dependence of phonons and the large thermal expansion of NaBr. The frequencies of longitudinal-optical phonon modes decrease significantly with temperature owing to the real part of the phonon self-energy from explicit anharmonicity originating from the cubic anharmonicity of nearest-neighbor NaBr bonds. Anharmonicity is not a correction to the QHA predictions of thermal expansion and thermal phonon shifts but dominates the behavior

    Methane and Nitrogen Abundances On Pluto and Eris

    Get PDF
    We present spectra of Eris from the MMT 6.5 meter telescope and Red Channel Spectrograph (5700-9800 angstroms; 5 angstroms per pix) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 meter telescope and Boller and Chivens spectrograph (7100-9400 angstroms; 2 angstroms per pix) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov and Yantsevich (1983), and comparing methane bands in our Eris and Pluto spectra and methane bands in our laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are about 10% and about 90%, and Pluto's bulk methane and nitrogen abundances are about 3% and about 97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 micron band is seen in spectra of Pluto and Triton.Comment: The manuscript has 44 pages, 15 figures, and four tables. It will appear in the Astrophysical Journa

    Nuclear magnetic resonance-paramagnetic relaxation enhancements: Influence of spatial quantization of the electron spin when the zero-field splitting energy is larger than the Zeeman energy

    Full text link
    Dissolved paramagnetic ions generally provide an efficient mechanism for the relaxation of nuclear spins in solution, a phenomenon called the nuclear magnetic resonance-paramagnetic relaxation enhancement (NMR-PRE). Metal ions with electron spins S ≥ 1S⩾1 exhibit rich NMR relaxation phenomena originating in the properties of the zero-field splitting (zfs) interaction, which vanishes for spin-½12 ions but which is nonzero for S ≥ 1S⩾1 ions in site symmetry lower than cubic. For S ≥ 1S⩾1 ions in the vicinity of the zfs-limit, i.e., at magnetic-field strengths low enough that the zfs energy exceeds the Zeeman energy, the NMR-PRE depends strongly on the detailed structure of the electron spin energy levels as well as on the spatial quantization of the spin motion. It is shown theoretically and experimentally that the NMR-PRE produced by integer spins can be influenced strongly by the small intradoublet zero-field splittings, i.e., the splittings between the components of the non-Kramers doublets, which are produced by noncylindrical components of the crystal field potential. These small splittings produce relatively low-frequency oscillations in the dipolar field associated with 〈〉〈Sẑ〉 (the spin component along the molecule-fixed ẑ axis). These motions decouple the nuclear spin from the electron spin, thereby depressing, in some cases very strongly, the NMR-PRE. The presence of a relatively small Zeeman field, comparable in magnitude to the intradoublet spacing but small compared to the larger interdoublet zfs splittings, causes a major change in the spin wave functions which has profound effects on the motions of the electron spin. When the Zeeman energy exceeds the small zfs splitting, the oscillatory motion of 〈〉〈Sẑ〉 damps out, with the result that the electron spin couples more effectively to the nuclear spin, providing a more efficient NMR relaxation pathway. NMR-PRE data are presented for the S = 1S=1 complex Ni(II)(o-pda)2Cl2Ni(II)(o-pda)2Cl2 (o-pda = ortho-phenylenediamine)(o-pda=ortho-phenylenediamine) which confirm the importance of the splitting of the mS = ±1mS=±1 non-Kramers doublet on the NMR relaxation efficiency. The zfs E-parameter was measured from the NMR data to be ∣E∣ = 0.26 cm−1.∣E∣=0.26cm−1. The S = 2S=2 spin system, Mn(III)Mn(III)-tetraphenylporphyrin sulfonate, exhibits a related phenomenon which arises from the effects of a small zfs splitting, Δϵ±2,Δϵ±2, of the mS = ±2mS=±2 non-Kramers doublet that is caused by a fourfold rotational component of the crystal field potential. The splitting Δϵ±2Δϵ±2 was measured from NMR data to be 0.20 cm−1.0.20cm−1. © 1998 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70721/2/JCPSA6-109-10-4035-1.pd
    • …
    corecore