1,286 research outputs found
Hipparcos distances of Ophiuchus and Lupus cloud complexes
We combine extinction maps from the Two Micron All Sky Survey (2MASS) with
Hipparcos and Tycho parallaxes to obtain reliable and high-precision estimates
of the distance to the Ophiuchus and Lupus dark complexes. Our analysis, based
on a rigorous maximum-likelihood approach, shows that the rho-Ophiuchi cloud is
located at (119 +/- 6) pc and the Lupus complex is located at (155 +/- 8) pc;
in addition, we are able to put constraints on the thickness of the clouds and
on their orientation on the sky (both these effects are not included in the
error estimate quoted above). For Ophiuchus, we find some evidence that the
streamers are closer to us than the core. The method applied in this paper is
currently limited to nearby molecular clouds, but it will find many natural
applications in the GAIA-era, when it will be possible to pin down the distance
and three-dimensional structure of virtually every molecular cloud in the
Galaxy.Comment: A&A in press - Corrected typo (Lupus distance) in the electronic
abstrac
A blocking and regularization approach to high dimensional realized covariance estimation
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven grouping of assets of similar trading frequency ensures the reduction of data loss due to refresh time sampling. In an extensive simulation study mimicking the empirical features of the S&P 1500 universe we show that the âRnBâ estimator yields efficiency gains and outperforms competing kernel estimators for varying liquidity settings, noise-to-signal ratios, and dimensions. An empirical application of forecasting daily covariances of the S&P 500 index confirms the simulation results
The mass function of dense molecular cores and the origin of the IMF
Context: Stars form in the cold dense cores of interstellar molecular clouds
and the detailed knowledge of the spectrum of masses of such cores is clearly a
key for the understanding of the origin of the IMF. To date, observations have
presented somewhat contradictory evidence relating to this issue. Aims: In this
paper we propose to derive the mass function of a complete sample of dense
molecular cores in a single cloud employing a robust method that uses uses
extinction of background starlight to measure core masses and enables the
reliable extension of such measurements to lower masses than previously
possible. Methods: We use a map of near-infrared extinction in the nearby Pipe
dark cloud to identify the population of dense cores in the cloud and measure
their masses. Results: We identify 159 dense cores and construct the mass
function for this population. We present the first robust evidence for a
departure from a single power-law form in the mass function of a population of
cores and find that this mass function is surprisingly similar in shape to the
stellar IMF but scaled to a higher mass by a factor of about 3. This suggests
that the distribution of stellar birth masses (IMF) is the direct product of
the dense core mass function and a uniform star formation efficiency of
30%+/-10%, and that the stellar IMF may already be fixed during or before the
earliest stages of core evolution. These results are consistent with previous
dust continuum studies which suggested that the IMF directly originates from
the core mass function. The typical density of ~10^4/cm^3 measured for the
dense cores in this cloud suggests that the mass scale that characterizes the
dense core mass function may be the result of a simple process of thermal
(Jeans) fragmentation.Comment: A&A accepte
The mid-infrared extinction law in the darkest cores of the Pipe Nebula
Context. The properties of dust grains, in particular their size
distribution, are expected to differ from the interstellar medium to the
high-density regions within molecular clouds. Aims. We measure the mid-infrared
extinction law produced by dense material in molecular cloud cores. Since the
extinction at these wavelengths is caused by dust, the extinction law in cores
should depart from that found in low-density environments if the dust grains
have different properties. Methods. We use the unbiased LINES method to measure
the slope of the reddening vectors in color-color diagrams. We derive the
mid-infrared extinction law toward the dense cores B59 and FeSt 1-457 in the
Pipe Nebula over a range of visual extinction between 10 and 50 magnitudes,
using a combination of Spitzer/IRAC, and ESO NTT/VLT data. Results. The
mid-infrared extinction law in both cores departs significantly from a
power-law between 3.6 and 8 micron, suggesting that these cores contain dust
with a considerable fraction of large dust grains. We find no evidence for a
dependence of the extinction law with column density up to 50 magnitudes of
visual extinction in these cores, and no evidence for a variation between our
result and those for other clouds at lower column densities reported elsewhere
in the literature. This suggests that either large grains are present even in
low column density regions, or that the existing dust models need to be revised
at mid-infrared wavelengths. We find a small but significant difference in the
extinction law of the two cores, that we tentatively associate with the onset
of star formation in B59.Comment: 8 pages, 6 figures. Accepted to A&
Application of pressure-sensitive paints to unsteady and high-speed flows
The Pressure-Sensitive Paint (PSP) technique allows the global pressure mapping of surfaces under aerodynamic conditions. The present study involves the application of Tris- Bathophenanthroline Ruthenium Perchlorate based PSP, developed in-house, to two different cases; a) the flow through a sonic nozzle, and b) the examination of the effect of dimples on glancing shock wave turbulent boundary layer interactions at transonic speeds
The [alpha/Fe] Ratios in Dwarf Galaxies: Evidence for a Non-universal Stellar Initial Mass Function?
It is well established that the [alpha/Fe] ratios in elliptical galaxies
increase with galaxy mass. This relation holds also for early-type dwarf
galaxies, although it seems to steepen at low masses. The [alpha/Fe] vs. mass
relation can be explained assuming that smaller galaxies form over longer
timescales (downsizing), allowing a larger amount of Fe (mostly produced by
long-living Type Ia Supernovae) to be released and incorporated into newly
forming stars. Another way to obtain the same result is by using a flatter
initial mass function (IMF) in large galaxies, increasing in this way the
number of Type II Supernovae and therefore the production rate of
alpha-elements. The integrated galactic initial mass function (IGIMF) theory
predicts that the higher the star formation rate, the flatter the IMF. We have
checked, by means of semi-analytical calculations, that the IGIMF theory,
combined with the downsizing effect (i.e. the shorter duration of the star
formation in larger galaxies), well reproduces the observed [alpha/Fe] vs. mass
relation. In particular, we show a steepening of this relation in dwarf
galaxies, in accordance with the available observations.Comment: 4 pages, 2 figures; to appear in the proceedings of the JENAM 2010
Symposium on Dwarf Galaxies (Lisbon, September 9-10, 2010
- âŠ