27,145 research outputs found
Electron Energy Distributions at Relativistic Shock Sites: Observational Constraints from the Cygnus A Hotspots
We report new detections of the hotspots in Cygnus A at 4.5 and 8.0 microns
with the Spitzer Space Telescope. Together with detailed published radio
observations and synchrotron self-Compton modeling of previous X-ray
detections, we reconstruct the underlying electron energy spectra of the two
brightest hotspots (A and D). The low-energy portion of the electron
distributions have flat power-law slopes (s~1.5) up to the break energy which
corresponds almost exactly to the mass ratio between protons and electrons; we
argue that these features are most likely intrinsic rather than due to
absorption effects. Beyond the break, the electron spectra continue to higher
energies with very steep slopes s>3. Thus, there is no evidence for the
`canonical' s=2 slope expected in 1st order Fermi-type shocks within the whole
observable electron energy range. We discuss the significance of these
observations and the insight offered into high-energy particle acceleration
processes in mildly relativistic shocks.Comment: 5 pages, 3 figures, in Extragalactic Jets: Theory and Observation
from Radio to Gamma Ray, Eds. T. A. Rector and D. S. De Youn
Cutout reinforcements for shear loaded laminate and sandwich composite panels
This paper presents the numerical and experimental studies of shear loaded
laminated and sandwich carbon/epoxy composite panels with cutouts and
reinforcements aiming at reducing the cutout stress concentration and increasing
the buckling stability of the panels. The effect of different cutout sizes and
the design and materials of cutout reinforcements on the stress and buckling
behaviour of the panels are evaluated. For the sandwich panels with a range of
cutout size and a constant weight, an optimal ratio of the core to the face
thickness has been studied for the maximum buckling stability. The finite
element method and an analytical method are employed to perform parametric
studies. In both constant stress and constant displacement shear loading
conditions, the results are in very good agreement with those obtained from
experiment for selected cutout reinforcement cases. Conclusions are drawn on the
cutout reinforcement design and improvement of stress concentration and buckling
behaviour of shear loaded laminated and sandwich composite panels with cutouts
Deep optical imaging of AGB circumstellar envelopes
We report results of a program to image the extended circumstellar envelopes
of asymptotic giant branch (AGB) stars in dust-scattered Galactic light. The
goal is to characterize the shapes of the envelopes to probe the mass-loss
geometry and the presence of hidden binary companions. The observations consist
of deep optical imaging of 22 AGB stars with high mass loss rates: 16 with the
ESO 3.5 m NTT telescope, and the remainder with other telescopes. The
circumstellar envelopes are detected in 15 objects, with mass loss rates > 2E-6
Msun/year. The surface brightness of the envelopes shows a strong decrease with
Galactic radius, which indicates a steep radial gradient in the interstellar
radiation field. The envelopes range from circular to elliptical in shape, and
we characterize them by the ellipticity (E = major/minor axis) of iso-intensity
contours. We find that about 50 percent of the envelopes are close to circular
with E
1.2. We interpret the shapes in terms of populations of single stars and
binaries whose envelopes are flattened by a companion. The distribution of E is
qualitatively consistent with expectations based on population synthesis models
of binary AGB stars. We also find that about 50 percent of the sample exhibit
small-scale, elongated features in the central regions. We interpret these as
the escape of light from the central star through polar holes, which are also
likely produced by companions. Our observations of envelope flattening and
polar holes point to a hidden population of companions within the circumstellar
envelopes of AGB stars. These companions are expected to play an important role
in the transition to post-AGB stars and the formation of planetary nebulae.Comment: 19 pages, 13 figures, color pictures in Appendix, accepted by A&
A kpc-scale X-ray jet in the BL Lac source S5 2007+777
X-ray jets in AGN are commonly observed in FRII and FRI radio-galaxies, but
rarely in BL Lacs, most probably due to their orientation close to the line of
sight and the ensuing foreshortening effects. Only three BL Lacs are known so
far to contain a kpc-scale X-ray jet. In this paper, we present the evidence
for the existence of a fourth extended X-ray jet in the classical
radio-selected source S5 2007+777, which for its hybrid FRI/II radio morphology
has been classified as a HYMOR (HYbrid MOrphology Radio source). Our Chandra
ACIS-S observations of this source revealed an X-ray counterpart to the
19"-long radio jet. Interestingly, the X-ray properties of the kpc-scale jet in
S5 2007+777 are very similar to those observed in FRII jets. First, the X-ray
morphology closely mirrors the radio one, with the X-rays being concentrated in
the discrete radio knots. Second, the X-ray continuum of the jet/brightest knot
is described by a very hard power law, with photon index Gamma_x~1, although
the uncertainties are large. Third, the optical upper limit from archival HST
data implies a concave radio-to-X-ray SED. If the X-ray emission is attributed
to IC/CMB with equipartition, strong beaming (delta=13) is required, implying a
very large scale (Mpc) jet. The beaming requirement can be somewhat relaxed
assuming a magnetic field lower than equipartition. Alternatively, synchrotron
emission from a second population of very high-energy electrons is viable.
Comparison to other HYMOR jets detected with Chandra is discussed, as well as
general implications for the origin of the FRI/II division.Comment: Accepted for publication in ApJ, 19 pages, 3 figure
A simplified model of the source channel of the Leksell Gamma Knife: testing multisource configurations with PENELOPE
A simplification of the source channel geometry of the Leksell Gamma
Knife, recently proposed by the authors and checked for a single
source configuration (Al-Dweri et al 2004), has been used to calculate the dose
distributions along the , and axes in a water phantom with a
diameter of 160~mm, for different configurations of the Gamma Knife including
201, 150 and 102 unplugged sources. The code PENELOPE (v. 2001) has been used
to perform the Monte Carlo simulations. In addition, the output factors for the
14, 8 and 4~mm helmets have been calculated. The results found for the dose
profiles show a qualitatively good agreement with previous ones obtained with
EGS4 and PENELOPE (v. 2000) codes and with the predictions of
GammaPlan. The output factors obtained with our model agree
within the statistical uncertainties with those calculated with the same Monte
Carlo codes and with those measured with different techniques. Owing to the
accuracy of the results obtained and to the reduction in the computational time
with respect to full geometry simulations (larger than a factor 15), this
simplified model opens the possibility to use Monte Carlo tools for planning
purposes in the Gamma Knife.Comment: 13 pages, 8 figures, 5 table
Using molecular mechanics to predict bulk material properties of fibronectin fibers
The structural proteins of the extracellular matrix (ECM) form fibers with finely tuned mechanical properties matched to the time scales of cell traction forces. Several proteins such as fibronectin (Fn) and fibrin undergo molecular conformational changes that extend the proteins and are believed to be a major contributor to the extensibility of bulk fibers. The dynamics of these conformational changes have been thoroughly explored since the advent of single molecule force spectroscopy and molecular dynamics simulations but remarkably, these data have not been rigorously applied to the understanding of the time dependent mechanics of bulk ECM fibers. Using measurements of protein density within fibers, we have examined the influence of dynamic molecular conformational changes and the intermolecular arrangement of Fn within fibers on the bulk mechanical properties of Fn fibers. Fibers were simulated as molecular strands with architectures that promote either equal or disparate molecular loading under conditions of constant extension rate. Measurements of protein concentration within micron scale fibers using deep ultraviolet transmission microscopy allowed the simulations to be scaled appropriately for comparison to in vitro measurements of fiber mechanics as well as providing estimates of fiber porosity and water content, suggesting Fn fibers are approximately 75% solute. Comparing the properties predicted by single molecule measurements to in vitro measurements of Fn fibers showed that domain unfolding is sufficient to predict the high extensibility and nonlinear stiffness of Fn fibers with surprising accuracy, with disparately loaded fibers providing the best fit to experiment. This work shows the promise of this microstructural modeling approach for understanding Fn fiber properties, which is generally applicable to other ECM fibers, and could be further expanded to tissue scale by incorporating these simulated fibers into three dimensional network models
X-ray Emitting GHz-Peaked Spectrum Galaxies: Testing a Dynamical-Radiative Model with Broad-Band Spectra
In a dynamical-radiative model we recently developed to describe the physics
of compact, GHz-Peaked-Spectrum (GPS) sources, the relativistic jets propagate
across the inner, kpc-sized region of the host galaxy, while the electron
population of the expanding lobes evolves and emits synchrotron and
inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the
expanding lobes, and photoionized by the active nucleus, are responsible for
the radio spectral turnover through free-free absorption (FFA) of the
synchrotron photons. The model provides a description of the evolution of the
spectral energy distribution (SED) of GPS sources with their expansion,
predicting significant and complex high-energy emission, from the X-ray to the
gamma-ray frequency domain. Here, we test this model with the broad-band SEDs
of a sample of eleven X-ray emitting GPS galaxies with Compact-Symmetric-Object
(CSO) morphology, and show that: (i) the shape of the radio continuum at
frequencies lower than the spectral turnover is indeed well accounted for by
the FFA mechanism; (ii) the observed X-ray spectra can be interpreted as
non-thermal radiation produced via IC scattering of the local radiation fields
off the lobe particles, providing a viable alternative to the thermal,
accretion-disk dominated scenario. We also show that the relation between the
hydrogen column densities derived from the X-ray (N_H) and radio (N_HI) data of
the sources is suggestive of a positive correlation, which, if confirmed by
future observations, would provide further support to our scenario of
high-energy emitting lobes.Comment: 29 pages, 3 figures, 6 tables; to appear in ApJ. A few clarifications
included, according to referee's suggestion
Recommended from our members
Use of Air Arthrograms to Aid in Joint Distraction During Hip Arthroscopic Surgery Decreases Postoperative Pain and Opioid Requirements.
BackgroundPositive-pressure air arthrography and venting of the hip capsule are techniques used to decrease the traction forces needed for joint distraction during hip arthroscopic surgery. Little is known about the effects that these techniques have on postoperative pain.HypothesisPositive-pressure air arthrography and venting during hip arthroscopic surgery will decrease patient-reported pain and narcotic requirements in the acute postoperative setting.Study designCohort study; Level of evidence, 3.MethodsA retrospective cohort analysis was conducted to analyze 35 patients who underwent positive-pressure air arthrography and venting to aid joint distraction during hip arthroscopic surgery versus a group with similar demographics, pathologies, and treatments who did not undergo air arthrography. Numeric pain rating scale (NPRS) scores and medication administration including narcotic and nonnarcotic analgesia in the postanesthesia care unit (PACU) were tracked and compared.ResultsThe maximum (7.17 vs 4.97, respectively), minimum (2.43 vs 1.09, respectively), and mean (5.15 vs 3.11, respectively) NPRS scores were all higher in the control group compared with the air arthrogram group (P < .001, P = .007, and P < .001, respectively). The administration of oral morphine equivalents (OMEs) during the PACU stay was significantly lower in the air arthrogram group, with a mean of 36.75 ± 11.37 OMEs, compared with 44.53 ± 16.06 OMEs in the control group (P = .023). There was no difference in postoperative nonopioid medications, such as ketorolac or acetaminophen, given between groups.ConclusionPatients undergoing hip arthroscopic surgery with air arthrography and venting used to aid distraction had significantly less postoperative pain and required a lower total dosage of opioids during their PACU stay when compared with patients who underwent hip arthroscopic surgery without air arthrography
- …