372 research outputs found

    Hubble Space Telescope Images of the Subarcsecond Jet in DG Tau

    Full text link
    We have applied a new restoration technique to archival [O~I], Hα\alpha, and continuum HST images of DG~Tau. The restored [O~I] and Hα\alpha images show that DG~Tau has a jet with a projected length of 25~AU and width \leq10~AU, and is already collimated at a projected distance of \sim~40~AU (0\farcs25) from the star. Such a narrow width and short collimation distance for a stellar jet places important constraints on theoretical models of jet formation.Comment: 6 pages, 3 figures included. All in postscript, please read instructions at the beginning of the file. Accepted by the Ap.J. Letter

    Layer-Parallel Training with GPU Concurrency of Deep Residual Neural Networks via Nonlinear Multigrid

    Full text link
    A Multigrid Full Approximation Storage algorithm for solving Deep Residual Networks is developed to enable neural network parallelized layer-wise training and concurrent computational kernel execution on GPUs. This work demonstrates a 10.2x speedup over traditional layer-wise model parallelism techniques using the same number of compute units.Comment: 7 pages, 6 figures, 27 citations. Accepted to 2020 IEEE High Performance Extreme Computing Conference - Outstanding Paper Awar

    Highly-Ionized High-Velocity Gas in the Vicinity of the Galaxy

    Get PDF
    We report the results of an extensive FUSE study of high velocity OVI absorption along 102 complete sight lines through the Galactic halo. The high velocity OVI traces a variety of phenomena, including tidal interactions with the Magellanic Clouds, accretion of gas, outflow from the Galactic disk, warm/hot gas interactions in a highly extended Galactic corona, and intergalactic gas in the Local Group. We identify 85 high velocity OVI features at velocities of -500 < v(LSR) < +500 km/s along 59 of the 102 sight lines. Approximately 60% of the sky (and perhaps as much as 85%) is covered by high velocity H+ associated with the high velocity OVI. Some of the OVI is associated with known high velocity HI structures (e.g., the Magellanic Stream, Complexes A and C), while some OVI features have no counterpart in HI 21cm emission. The smaller dispersion in the OVI velocities in the GSR and LGSR reference frames compared to the LSR is necessary (but not conclusive) evidence that some of the clouds are extragalactic. Most of the OVI cannot be produced by photoionization, even if the gas is irradiated by extragalactic background radiation. Collisions in hot gas are the primary OVI ionization mechanism. We favor production of some of the OVI at the boundaries between warm clouds and a highly extended [R > 70 kpc], hot [T > 10^6 K], low-density [n < 10^-4 cm^-3] Galactic corona or Local Group medium. A hot Galactic corona or Local Group medium and the prevalence of high velocity OVI are consistent with predictions of galaxy formation scenarios. Distinguishing between the various phenomena producing high velocity OVI will require continuing studies of the distances, kinematics, elemental abundances, and physical states of the different types of high velocity OVI features found in this study. (abbreviated)Comment: 78 pages of text/tables + 31 figures, AASTeX preprint format. All figures are in PNG format due to astro-ph space restrictions. Bound copies of manuscript and two accompanying articles are available upon request. Submitted to ApJ

    A Catalogue of Field Horizontal Branch Stars Aligned with High Velocity Clouds

    Full text link
    We present a catalogue of 430 Field Horizontal Branch (FHB) stars, selected from the Hamburg/ESO Survey (HES), which fortuitously align with high column density neutral hydrogen (HI) High-Velocity Cloud (HVC) gas. These stars are ideal candidates for absorption-line studies of HVCs, attempts at which have been made for almost 40 years with little success. A parent sample of 8321 HES FHB stars was used to extract HI spectra along each line-of-sight, using the HI Parkes All-Sky Survey. All lines-of-sight aligned with high velocity HI emission with peak brightness temperatures greater than 120mK were examined. The HI spectra of these 430 probes were visually screened and cross-referenced with several HVC catalogues. In a forthcoming paper, we report on the results of high-resolution spectroscopic observations of a sample of stars drawn from this catalogue.Comment: 7 pages, 4 figures. ApJS accepted. Full catalogue and all online-only images available at http://astronomy.swin.edu.au/staff/cthom/catalogue/index.htm

    Model for Gravitational Interaction between Dark Matter and Baryons

    Full text link
    We propose a phenomenological model where the gravitational interaction between dark matter and baryons is suppressed on small, subgalactic scales. We describe the gravitational force by adding a Yukawa contribution to the standard Newtonian potential and show that this interaction scheme is effectively suggested by the available observations of the inner rotation curves of small mass galaxies. Besides helping in interpreting the cuspy profile of dark matter halos observed in N-body simulations, this potential regulates the quantity of baryons within halos of different masses.Comment: 4 pages, 2 figures, final versio

    The nature of the soft X-ray source in DG Tau

    Full text link
    The classical T Tauri star DG Tau shows all typical signatures of X-ray activity and, in particular, harbors a resolved X-ray jet. We demonstrate that its soft and hard X-ray components are separated spatially by approximately 0.2 arcsec by deriving the spatial offset between both components from the event centroids of the soft and hard photons utilizing the intrinsic energy-resolution of the Chandra ACIS-S detector. We also demonstrate that this offset is physical and cannot be attributed to an instrumental origin or to low counting statistics. Furthermore, the location of the derived soft X-ray emission peak coincides with emission peaks observed for optical emission lines, suggesting that both, soft X-rays and optical emission, have the same physical origin.Comment: 5 pages, 3 figures, accepted for publication as A&A Lette

    3D-Matched-Filter Galaxy Cluster Finder I: Selection Functions and CFHTLS Deep Clusters

    Full text link
    We present an optimised galaxy cluster finder, 3D-Matched-Filter (3D-MF), which utilises galaxy cluster radial profiles, luminosity functions and redshift information to detect galaxy clusters in optical surveys. This method is an improvement over other matched-filter methods, most notably through implementing redshift slicing of the data to significantly reduce line-of-sight projections and related false positives. We apply our method to the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) Deep fields, finding ~170 galaxy clusters per square degree in the 0.2 <= z <= 1.0 redshift range. Future surveys such as LSST and JDEM can exploit 3D-MF's automated methodology to produce complete and reliable galaxy cluster catalogues. We determine the reliability and accuracy of the statistical approach of our method through a thorough analysis of mock data from the Millennium Simulation. We detect clusters with 100% completeness for M_200 >= 3.0x10^(14)M_sun, 88% completeness for M_200 >= 1.0x10^(14)M_sun, and 72% completeness well into the 10^(13)M_sun cluster mass range. We show a 36% multiple detection rate for cluster masses >= 1.5x10^(13)M_sun and a 16% false detection rate for galaxy clusters >~ 5x10^(13)M_sun, reporting that for clusters with masses <~ 5x10^(13)M_sun false detections may increase up to ~24%. Utilising these selection functions we conclude that our galaxy cluster catalogue is the most complete CFHTLS Deep cluster catalogue to date.Comment: 18 pages, 17 figures, 5 tables; v2: added Fig 5, minor edits to match version published in MNRA

    Scenario analysis for the San Pedro River, analyzing hydrological consequences of a future environment.

    Get PDF
    Abstract. Studies of future management and policy options based on different assumptions provide a mechanism to examine possible outcomes and especially their likely benefits and consequences. The San Pedro River in Arizona and Sonora, Mexico is an area that has undergone rapid changes in land use and cover, and subsequently is facing keen environmental crises related to water resources. It is the location of a number of studies that have dealt with change analysis, watershed condition, and most recently, alternative futures analysis. The previous work has dealt primarily with resources of habitat, visual quality, and groundwater related to urban development patterns and preferences. In the present study, previously defined future scenarios, in the form of land-use/land-cover grids, were examined relative to their impact on surface-water conditions (e.g., surface runoff and sediment yield). These hydrological outputs were estimated for the baseline year of 2000 and predicted twenty years in the future as a demonstration of how new geographic information system-based hydrologic modeling tools can be used to evaluate the spatial impacts of urban growth patterns on surface-water hydrology

    Modeling Urban Hydrology and Green Infrastructure Using the AGWA Urban Tool and the KINEROS2 Model

    Get PDF
    Urban hydrology and green infrastructure (GI) can be modeled using the Automated Geospatial Watershed Assessment (AGWA) Urban tool and the Kinematic Runoff and Erosion (KINEROS2) model. The KINEROS2 model provides an urban modeling element with nine overland flow components that can be used to represent various land cover types commonly found in the built environment while treating runoff-runon and infiltration processes in a physically based manner. The AGWA Urban tool utilizes a Geographic Information System (GIS) framework to prepare parameters required for KINEROS2, executes the model, and imports results for visualization in the GIS. The AGWA Urban tool was validated on a residential subdivision in Arizona, USA, using 47 rainfall events (June 2005 to September 2006) to compare observed runoff volumes and peak flow rates with simulated results. Comparison of simulated and observed runoff volumes resulted in a slope of 1.00 for the regression equation with an R2 value of 0.80. Comparison of observed and simulated peak flows had a slope of 1.12 with an R2 value of 0.83. A roof runoff analysis was simulated for 787 events, from January 2006 through December 2015, to analyze the water availability from roof runoff capture. Simulation results indicated a 15% capture of the average monthly rainfall volume on the watershed. Additionally, rainwater captured from roofs has the potential to provide for up to 70% of the domestic annual per capita water use in this region. Five different scenarios (S1 - base, S2 - with retention basins, S3 - with permeable driveways, S4 - with rainwater harvesting cisterns, and S5 - all GI practices from S2, S3, and S4) were simulated over the same period to compare the effectiveness of GI implementation at the parcel level on runoff and peak flows at the watershed outlet. Simulation results indicate a higher runoff volume reduction for S2 (53.41 m3 average capacity, average 30% reduction) as compared to S3 (average 14% reduction), or S4 (3.78 m3 capacity, average 6% reduction). Analysis of peak flows reveal larger peak flow reduction for S2. S3 showed more reduction of smaller peak flows as compared to S4

    Galaxy Occupation Statistics of Dark Matter Haloes: Observational Results

    Full text link
    We study the occupation statistics of galaxies in dark matter haloes using galaxy groups identified from the 2-degree Field Galaxy Redshift Survey with the halo-based group finder of Yang et al. The occupation distribution is considered separately for early and late type galaxies, as well as in terms of central and satellite galaxies. The mean luminosity of the central galaxies scales with halo mass approximately as LcM2/3L_c\propto M^{2/3} for haloes with masses M<10^{13}h^{-1}\msun, and as LcM1/4L_c\propto M^{1/4} for more massive haloes. The characteristic mass of 10^{13} h^{-1} \Msun is consistent with the mass scale where galaxy formation models suggest a transition from efficient to inefficient cooling. Another characteristic halo mass scale, M\sim 10^{11} h^{-1}\msun, which cannot be probed directly by our groups, is inferred from the conditional luminosity function (CLF) that matches the observed galaxy luminosity function and clustering. For a halo of given mass, the distribution of LcL_c is rather narrow. The satellite galaxies are found to follow a Poissonian number distribution. The central galaxies in low-mass haloes are mostly late type galaxies, while those in massive haloes are almost all early types. We also measure the CLF of galaxies in haloes of given mass. Over the mass range that can be reliably probed with the present data (13.3 \lta {\rm log}[M/(h^{-1}\Msun)] \lta 14.7), the CLF is reasonably well fit by a Schechter function. Contrary to recent claims based on semi-analytical models of galaxy formation, the presence of central galaxies does not show up as a strong peak at the bright end of the CLF. (Abridged)Comment: 17 pages, 11 figures, revised version. Two figures added. A few small changes. Main conclusions remain unchange
    corecore