13,641 research outputs found

    A preliminary investigation of trunk and wrist kinematics when using drivers with different shaft properties

    Get PDF
    It is unknown whether skilled golfers will modify their kinematics when using drivers of different shaft properties. This study aimed to firstly, determine if golf swing kinematics and swing parameters and related launch conditions differed when using modified drivers, then secondly, determine which kinematics were associated with clubhead speed. Twenty high level amateur male golfers (Mean ± SD: handicap = 1.9 ± 1.9 score) had their three-dimensional trunk and wrist kinematics collected for two driver trials. Swing parameters and related launch conditions were collected using a launch monitor. A one-way repeated measures ANOVA revealed significant (p ≤ 0.003) between-driver differences; specifically, faster trunk axial rotation velocity and an early wrist release for the low kick point driver. Launch angle was shown to be 2° lower for the high kick point driver. Regression models for both drivers explained a significant amount of variance (60 – 67%) in clubhead speed. Wrist kinematics were most associated with clubhead speed, indicating the importance of the wrists in producing clubhead speed regardless of driver shaft properties

    Formation of the 0.511.-MeV line in solar flares

    Get PDF
    The gamma-ray line produced at 0.51-MeV was studied and is shown to be the result of either of free annihilation of positrons with electrons or of the decay of positronium by 2-photon emission. Positron annihilation from the bound state of positronium may also proceed by 3-photon emission, resulting in a continuum with energies up to 0.51-MeV. Accurate calculations of the rates of free annihilation and positronium formation in a solar-flare plasma are presented. Estimates of the positronium-formulation rates by charge exchange and the rates of dissociation and quenching are also considered. The temperature and density dependence of the ratio of 3-photon to 2-photon emission was obtained. It is shown that when the ratio of free electrons to neutral atoms in the plasma is approximately unity or greater, the Doppler width of the 0.51-MeV line is a function of the temperature of the annihilation region. For the small ion densities characteristics of the photosphere, the width is predominantly a function of the density

    Quasi-stationary states and the range of pair interactions

    Full text link
    "Quasi-stationary" states are approximately time-independent out of equilibrium states which have been observed in a variety of systems of particles interacting by long-range interactions. We investigate here the conditions of their occurrence for a generic pair interaction V(r \rightarrow \infty) \sim 1/r^a with a > 0, in d>1 dimensions. We generalize analytic calculations known for gravity in d=3 to determine the scaling parametric dependences of their relaxation rates due to two body collisions, and report extensive numerical simulations testing their validity. Our results lead to the conclusion that, for a < d-1, the existence of quasi-stationary states is ensured by the large distance behavior of the interaction alone, while for a > d-1 it is conditioned on the short distance properties of the interaction, requiring the presence of a sufficiently large soft-core in the interaction potential.Comment: 5 pages, 3 figures; final version to appear in Phys. Rev. Let

    Analysis of wind tunnel test results for a 9.39-per cent scale model of a VSTOL fighter/attack aircraft. Volume 1: Study overview

    Get PDF
    The ability of current methodologies to accurately predict the aerodynamic characteristics identified as uncertainties was evaluated for two aircraft configurations. The two wind tunnel models studied horizontal altitude takeoff and landing V/STOL fighter aircraft derivatives

    Three-dimensional images of choanoflagellate loricae

    Get PDF
    Choanoflagellates are unicellular filter-feeding protozoa distributed universally in aquatic habitats. Cells are ovoid in shape with a single anterior flagellum encircled by a funnel-shaped collar of microvilli. Movement of the flagellum creates water currents from which food particles are entrapped on the outer surface of the collar and ingested by pseudopodia. One group of marine choanoflagellates has evolved an elaborate basket-like exoskeleton, the lorica, comprising two layers of siliceous costae made up of costal strips. A computer graphic model has been developed for generating three-dimensional images of choanoflagellate loricae based on a universal set of 'rules' derived from electron microscopical observations. This model has proved seminal in understanding how complex costal patterns can be assembled in a single continuous movement. The lorica, which provides a rigid framework around the cell, is multifunctional. It resists the locomotory forces generated by flagellar movement, directs and enhances water flow over the collar and, for planktonic species, contributes towards maintaining cells in suspension. Since the functional morphology of choanoflagellate cells is so effective and has been highly conserved within the group, the ecological and evolutionary radiation of choanoflagellates is almost entirely dependent on the ability of the external coverings, particularly the lorica, to diversify

    Analysis of wind tunnel test results for a 9.39-per cent scale model of a VSTOL fighter/attack aircraft. Volume 3: Effects of configuration variations from baseline

    Get PDF
    The aerodynamic characteristics of the components of the baseline E205 configuration is presented. Geometric variations from the baseline E205 configuration are also given including a matrix of conrad longitudinal locations and strake shapes

    Photoexcited electron dynamics in Kondo insulators and heavy fermions

    Full text link
    We have studied the photoexcited carrier relaxation dynamics in the Kondo insulator SmB6 and the heavy fermion metal YbAgCu4 as a function of temperature and excitation level. The dynamic response is found to be both strongly temperature dependent and nonlinear. The data are analyzed with a Rothwarf-Taylor bottleneck model, where the dynamics are governed by the presence of a narrow gap in the density of states near the Fermi level. The remarkable agreement with the model suggests that carrier relaxation in a broad class of heavy electron systems (both metals and insulators) is governed by the presence of a (weakly temperature dependent) hybridization gap.Comment: accepted for publication in Physical Review Letter

    The relationship between repeated kicking performance and maximal aerobic capacity in elite junior Australian football

    Get PDF
    Australian football (AF) is a physically demanding game, requiring players to engage in a range of anaerobic activities interspersed with prolonged aerobic exercise. Coupled, players have to perform a range of technical skills, the most fundamental of which being to effectively kick (dispose) the ball. The aim of this study was to ascertain the extent to which aerobic capacity influenced kicking performance in AF. Twenty four elite U18 players competing in the same U18 competition performed the Australian Football Kicking test (AFK) three times with the yo-yo IR2 completed twice (between each AFK), with no rest between all three AFKs. Linear mixed models (LMM) reported the extent to which kicking speed and accuracy scores were influenced by the level reached on the yo-yo IR2. Results indicated that players who recorded a higher level on the yo-yo IR2 produced a faster average kicking speed following each AFK (P
    • …
    corecore