663 research outputs found

    A mathematical model to serve as a clinical tool for assessing obstructive sleep apnea severity

    Get PDF
    Obstructive sleep apnea (OSA) is a sleep disorder caused by periodic airway obstructions and has been associated with numerous health consequences, which are thought to result from tissue hypoxia. However, challenges in the direct measurement of tissue-level oxygenation make it difficult to analyze the hypoxia exposure pattern in patients. Furthermore, current clinical practice relies on the apnea-hypopnea index (AHI) and pulse oximetry to assess OSA severity, both of which have limitations. To overcome this, we developed a clinically deployable mathematical model, which outputs tissue-level oxygenation. The model incorporates spatial pulmonary oxygen uptake, considers dissolved oxygen, and can use time-dependent patient inputs. It was applied to explore a series of breathing patterns that are clinically differentiated. Supporting previous studies, the result of this analysis indicated that the AHI is an unreliable indicator of hypoxia burden. As a proof of principle, polysomnography data from two patients was analyzed with this model. The model showed greater sensitivity to breathing in comparison with pulse oximetry and provided systemic venous oxygenation, which is absent from clinical measurements. In addition, the dissolved oxygen output was used to calculate hypoxia burden scores for each patient and compared to the clinical assessment, highlighting the importance of event length and cumulative impact of obstructions. Furthermore, an intra-patient statistical analysis was used to underscore the significance of closely occurring obstructive events and to highlight the utility of the model for quantitative data processing. Looking ahead, our model can be used with polysomnography data to predict hypoxic burden on the tissues and help guide patient treatment decisions

    NOD × 129.H2g7 Backcross Delineates 129S1/SvImJ-Derived Genomic Regions Modulating Type 1 Diabetes Development in Mice

    Get PDF
    OBJECTIVE: Introduction of genes targeted in 129/Sv embryonic stem (ES) cells into NOD mice brings about linked genes that may modulate type 1 diabetes. Our objective was to identify 129S1/SvJ non-MHC regions contributing type 1 diabetes resistance or susceptibility in backcross to NOD/LtJ. RESEARCH DESIGN AND METHODS: After congenic transfer of the NOD H2(g7) haplotype onto 129S1/Sv, 310 females were produced by NOD x (NOD x 129.H2(g7))F1 backcross (N2). A genome scan for quantitative trait locus (QTL) affecting clinical diabetes, age of diabetes onset, and insulitis severity was performed using subphenotype characteristics to improve power and resolution for detection of diabetes susceptibility loci. RESULTS: Thirty-six of 310 (11.6%) N2 females developed type 1 diabetes between 14 and 40 weeks. Significant evidence of linkage for only a single previously reported Idd complex locus (Idd10/17/18, chromosome [Chr] 3) was indicated for clinical diabetes. The quantitative traits of insulitis either alone or combined with age at type 1 diabetes onset were significantly linked to known Idd regions on Chr 1 (Idd5 region), Chr 4 (Idd9 region), Chr 8 (Idd22), Chr 11 (Idd4.3), and proximal Chr 17 (Idd16 region). Significant 129S1/Sv resistance contributions were identified on Chr 1, 15 (two loci), and 19, with suggestive evidence for additional novel 129/Sv resistance QTL on Chr 5 and 17 and susceptibility on Chr 2. CONCLUSIONS: The 129S1/SvJ genome harbors collections of both known and potentially novel non-MHC Idd loci. Investigators targeting 129/Sv genes mapping within chromosomal regions reported herein or elsewhere in the genome need to exclude potential contributions from linked Idd loci by generating a NOD.129 control strain expressing the nontargeted allele

    Goal-Driven Structured Argumentation for Patient Management in a Multimorbidity Setting

    Get PDF
    We use computational argumentation to both analyse and generate solutions for reasoning in multimorbidity about consistent recommendations, according to different patient-centric goals. Reasoning in this setting carries a complexity related to the multiple variables involved. These variables reflect the co-existing health conditions that should be considered when defining a proper therapy. However, current Clinical Decision Support Systems (CDSSs) are not equipped to deal with such a situation. They do not go beyond the straightforward application of the rules that build their knowledge base and simple interpretation of Computer-Interpretable Guidelines (CIGs). We provide a computational argumentation system equipped with goal-seeking mechanisms to combine independently generated recommendations, with the ability to resolve conflicts and generate explanations for its results. We also discuss its advantages over and relation to Multiple-criteria Decision-making (MCDM) in this particular setting.- (undefined

    Critical exponents and equation of state of the three-dimensional Heisenberg universality class

    Full text link
    We improve the theoretical estimates of the critical exponents for the three-dimensional Heisenberg universality class. We find gamma=1.3960(9), nu=0.7112(5), eta=0.0375(5), alpha=-0.1336(15), beta=0.3689(3), and delta=4.783(3). We consider an improved lattice phi^4 Hamiltonian with suppressed leading scaling corrections. Our results are obtained by combining Monte Carlo simulations based on finite-size scaling methods and high-temperature expansions. The critical exponents are computed from high-temperature expansions specialized to the phi^4 improved model. By the same technique we determine the coefficients of the small-magnetization expansion of the equation of state. This expansion is extended analytically by means of approximate parametric representations, obtaining the equation of state in the whole critical region. We also determine a number of universal amplitude ratios.Comment: 40 pages, final version. In publication in Phys. Rev.

    Critical behavior of the three-dimensional XY universality class

    Full text link
    We improve the theoretical estimates of the critical exponents for the three-dimensional XY universality class. We find alpha=-0.0146(8), gamma=1.3177(5), nu=0.67155(27), eta=0.0380(4), beta=0.3485(2), and delta=4.780(2). We observe a discrepancy with the most recent experimental estimate of alpha; this discrepancy calls for further theoretical and experimental investigations. Our results are obtained by combining Monte Carlo simulations based on finite-size scaling methods, and high-temperature expansions. Two improved models (with suppressed leading scaling corrections) are selected by Monte Carlo computation. The critical exponents are computed from high-temperature expansions specialized to these improved models. By the same technique we determine the coefficients of the small-magnetization expansion of the equation of state. This expansion is extended analytically by means of approximate parametric representations, obtaining the equation of state in the whole critical region. We also determine the specific-heat amplitude ratio.Comment: 61 pages, 3 figures, RevTe

    Improved high-temperature expansion and critical equation of state of three-dimensional Ising-like systems

    Full text link
    High-temperature series are computed for a generalized 3d3d Ising model with arbitrary potential. Two specific ``improved'' potentials (suppressing leading scaling corrections) are selected by Monte Carlo computation. Critical exponents are extracted from high-temperature series specialized to improved potentials, achieving high accuracy; our best estimates are: γ=1.2371(4)\gamma=1.2371(4), ν=0.63002(23)\nu=0.63002(23), α=0.1099(7)\alpha=0.1099(7), η=0.0364(4)\eta=0.0364(4), β=0.32648(18)\beta=0.32648(18). By the same technique, the coefficients of the small-field expansion for the effective potential (Helmholtz free energy) are computed. These results are applied to the construction of parametric representations of the critical equation of state. A systematic approximation scheme, based on a global stationarity condition, is introduced (the lowest-order approximation reproduces the linear parametric model). This scheme is used for an accurate determination of universal ratios of amplitudes. A comparison with other theoretical and experimental determinations of universal quantities is presented.Comment: 65 pages, 1 figure, revtex. New Monte Carlo data by Hasenbusch enabled us to improve the determination of the critical exponents and of the equation of state. The discussion of several topics was improved and the bibliography was update

    Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.

    Get PDF
    To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity

    Supporting systematic reviews using LDA-based document representations

    Get PDF
    BACKGROUND: Identifying relevant studies for inclusion in a systematic review (i.e. screening) is a complex, laborious and expensive task. Recently, a number of studies has shown that the use of machine learning and text mining methods to automatically identify relevant studies has the potential to drastically decrease the workload involved in the screening phase. The vast majority of these machine learning methods exploit the same underlying principle, i.e. a study is modelled as a bag-of-words (BOW). METHODS: We explore the use of topic modelling methods to derive a more informative representation of studies. We apply Latent Dirichlet allocation (LDA), an unsupervised topic modelling approach, to automatically identify topics in a collection of studies. We then represent each study as a distribution of LDA topics. Additionally, we enrich topics derived using LDA with multi-word terms identified by using an automatic term recognition (ATR) tool. For evaluation purposes, we carry out automatic identification of relevant studies using support vector machine (SVM)-based classifiers that employ both our novel topic-based representation and the BOW representation. RESULTS: Our results show that the SVM classifier is able to identify a greater number of relevant studies when using the LDA representation than the BOW representation. These observations hold for two systematic reviews of the clinical domain and three reviews of the social science domain. CONCLUSIONS: A topic-based feature representation of documents outperforms the BOW representation when applied to the task of automatic citation screening. The proposed term-enriched topics are more informative and less ambiguous to systematic reviewers. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13643-015-0117-0) contains supplementary material, which is available to authorized users
    corecore