73 research outputs found

    Short range correlations in the pion s-wave self-energy of pionic atoms

    Get PDF
    We evaluate the contribution of second order terms to the pion-nucleus s-wave optical potential of pionic atoms generated by short range nuclear correlation. The corrections are sizeable because they involve the isoscalar s-wave πN amplitude for half off-shell situations where the amplitude is considerably larger than the on-shell one. In addition, the s-wave optical potential is reanalyzed by looking at all the different conventional contributions together lowest order, Pauli corrected rescattering term, second order absorptive effects, terms from the interaction of pions with the virtual pion cloud (chiral corrections) and correlation effects. Different off-shell extrapolations for the πN amplitude are used and it is found that, although some individual terms are sensitive to the extrapolation, the sum of them is rather insensitive. The results are compared with empirical values from best fits to the data and are found to be compatible, within theoretical and empirical uncertainties. The results do not rule out further contributions but they put stringent constraints on their strength

    Pseudovector vs. pseudoscalar coupling in one-boson exchange NN potentials

    Get PDF
    We examine the effects of pseudoscalar and pseudovector coupling of the pi and eta mesons in one-boson exchange models of the NN interaction using two approaches: time-ordered perturbation theory unitarized with the relativistic Lippmann-Schwinger equation, and a reduced Bethe-Salpeter equation approach using the Thompson equation. Contact terms in the one-boson exchange amplitudes in time-ordered perturbation theory lead naturally to the introduction of s-channel nucleonic cutoffs for the interaction, which strongly suppresses the far off-shell behavior of the amplitudes in both approaches. Differences between the resulting NN predictions of the various models are found to be small, and particularly so when coupling constants of the other mesons are readjusted within reasonable limits.Comment: 24 pages, 4 figure

    Covariant representations of the relativistic Brueckner T-matrix and the nuclear matter problem

    Get PDF
    We investigate nuclear matter properties in the relativistic Brueckner approach. The in-medium on-shell T-matrix is represented covariantly by five Lorentz invariant amplitudes from which we deduce directly the nucleon self-energy. We discuss the ambiguities of this approach and the failure of previously used covariant representations in reproducing the nucleon self-energies on the Hartree-Fock level. To enforce correct Hartree-Fock results we develop a subtraction scheme which treats the bare nucleon-nucleon potential exactly in accordance to the different types of meson exchanges. For the remaining ladder kernel, which contains the higher order correlations, we employ then two different covariant representations in order to study the uncertainty inherent in the approach. The nuclear matter bulk properties are only slightly sensitive on the explicit representation used for the kernel. However, we obtain new Coester lines for the various Bonn potentials which are shifted towards the empirical region of saturation. In addition the nuclear equation-of-state turns out to be significantly softer in the new approach.Comment: 39 pages Latex using Elsevier style, 16 PS figure

    Lattice QCD Calculation of Hadron Scattering Lengths

    Get PDF
    Method of calculating hadron multi-point functions and disconnected quark loop contributions which are not readily accessible through conventional techniques is proposed. Results are reported for pion-pion, pion-nucleon and nucleon-nucleon scattering lengths and the flavor singlet-non singlet meson mass splitting estimated in quenched QCD.Comment: 6 pages. Contribution to Lattice '93. Latex file, style file espcrc2.sty needed.(appended at the end) Figures are also included as epsf file

    Composite vertices that lead to soft form factors

    Get PDF
    The momentum-space cut-off parameter Λ\Lambda of hadronic vertex functions is studied in this paper. We use a composite model where we can measure the contributions of intermediate particle propagations to Λ\Lambda. We show that in many cases a composite vertex function has a much smaller cut-off than its constituent vertices, particularly when light constituents such as pions are present in the intermediate state. This suggests that composite meson-baryon-baryon vertex functions are rather soft, i.e., they have \Lambda considerably less than 1 GeV. We discuss the origin of this softening of form factors as well as the implications of our findings on the modeling of nuclear reactions.Comment: REVTex, 19 pages, 5 figs(to be provided on request

    Relativistic Hamiltonians in many-body theories

    Get PDF
    We discuss the description of a many-body nuclear system using Hamiltonians that contain the nucleon relativistic kinetic energy and potentials with relativistic corrections. Through the Foldy-Wouthuysen transformation, the field theoretical problem of interacting nucleons and mesons is mapped to an equivalent one in terms of relativistic potentials, which are then expanded at some order in 1/m_N. The formalism is applied to the Hartree problem in nuclear matter, showing how the results of the relativistic mean field theory can be recovered over a wide range of densities.Comment: 14 pages, uses REVTeX and epsfig, 3 postscript figures; a postscript version of the paper is available by anonymous ftp at ftp://carmen.to.infn.it/pub/depace/papers/951

    Combined Description of NN\bf{\overline{N}N} Scattering and Annihilation With A Hadronic Model

    Full text link
    A model for the nucleon-antinucleon interaction is presented which is based on meson-baryon dynamics. The elastic part is the GG-parity transform of the Bonn NNNN potential. Annihilation into two mesons is described in terms of microscopic baryon-exchange processes including all possible combinations of π,η,ρ,ω,a0,f0,a1,f1,a2,f2,K,K\pi,\eta,\rho,\omega,a_0,f_0,a_1,f_1,a_2,f_2,K,K^*. The remaining annihilation part is taken into account by a phenomenological energy- and state independent optical potential of Gaussian form. The model enables a simultaneous description of nucleon-antinucleon scattering and annihilation phenomena with fair quality.Comment: revised version, REVTEX, 9 pages, 10 figures available from this URL ftp://ikp113.ikp.kfa-juelich.de/pub/kph140/nucl-th.9411014.u

    Consistent description of NN and pi-N interactions using the solitary boson exchange potential

    Get PDF
    A unified description of NN and pi-N elastic scattering is presented in the framework of the one solitary boson exchange potential (OSBEP). This model already successfully applied to analyze NN scattering is now extended to describe pi-N scattering while also improving its accuracy in the NN domain. We demonstrate the importance of regularization of pi-N scattering amplitudes involving Delta isobars and derivative meson-nucleon couplings, as this model always yields finite amplitudes without recourse to phenomenological form factors. We find an empirical scaling relation of the meson self interaction coupling constants consistent with that previously found in the study of NN scattering. Finally, we demonstrate that the OSBEP model does not contradict the soft-pion theorems of pi-N scattering.Comment: 29 pages RevTeX, submitted to Phys. Rev. C, further information at http://i04ktha.desy.d

    N N bar,Delta bar N, Delta N bar excitation for the pion propagator in nuclear matter

    Full text link
    The particle-hole and Delta -hole excitations are well-known elementary excitation modes for the pion propagator in nuclear matter. But, the excitation also involves antiparticles, namely, nucleon-antinucleon, anti-Delta-nucleon and Delta-antinucleon excitations. These are important for high-energy momentum as well, and have not been studied before, to our knowledge. In this paper, we give both the formulas and the numerical calculations for the real and the imaginary parts of these excitations.Comment: Latex, 3 eps file

    On the Relativistic Description of the Nucleus

    Full text link
    We discuss a relativistic theory of the atomic nuclei in the framework of the hamiltonian formalism and of the mesonic model of the nucleus. Attention is paid to the translational invariance of the theory. Our approach is centered on the concept of spectral amplitude, a function in the Dirac spinor space. We derive a Lorentz covariant equation for the latter, which requires as an input the baryon self-energy. For this we either postulate the most general Lorentz-Poincar\'e invariant expression or perform a calculation via a Bethe-Salpeter equation starting from a nucleon-nucleus interaction. We discuss the features of the nuclear spectrum obtained in the first instance. Finally the general constraints the self-energy should satisfy because of analyticity and Poincar\'e covariance are discussed
    corecore