5,065 research outputs found

    Are there S=-2 Pentaquarks?

    Full text link
    Recent evidence for pentaquark baryons in the channels Ξ−π−\Xi^-\pi^-, Ξ−π+\Xi^-\pi^+ and their anti-particles claimed by the NA49 collaboration is critically confronted with the vast amount of existing data on Ξ\Xi spectroscopy which was accumulated over the past decades. It is shown that the claim is at least partially inconsistent with these data. In addition two further exotic channels of the pentaquark type available in the NA49 data are investigated. It is argued that this study leads to internal inconsistency with the purported signals

    Minimum cell connection in line segment arrangements

    Get PDF
    We study the complexity of the following cell connection problems in segment arrangements. Given a set of straight-line segments in the plane and two points a and b in different cells of the induced arrangement: (i) compute the minimum number of segments one needs to remove so that there is a path connecting a to b that does not intersect any of the remaining segments; (ii) compute the minimum number of segments one needs to remove so that the arrangement induced by the remaining segments has a single cell. We show that problems (i) and (ii) are NP-hard and discuss some special, tractable cases. Most notably, we provide a near-linear-time algorithm for a variant of problem (i) where the path connecting a to b must stay inside a given polygon P with a constant number of holes, the segments are contained in P, and the endpoints of the segments are on the boundary of P. The approach for this latter result uses homotopy of paths to group the segments into clusters with the property that either all segments in a cluster or none participate in an optimal solution

    R-matrix theory of driven electromagnetic cavities

    Full text link
    Resonances of cylindrical symmetric microwave cavities are analyzed in R-matrix theory which transforms the input channel conditions to the output channels. Single and interfering double resonances are studied and compared with experimental results, obtained with superconducting microwave cavities. Because of the equivalence of the two-dimensional Helmholtz and the stationary Schroedinger equations, the results present insight into the resonance structure of regular and chaotic quantum billiards.Comment: Revtex 4.

    Long-range behavior of the optical potential for the elastic scattering of charged composite particles

    Get PDF
    The asymptotic behavior of the optical potential, describing elastic scattering of a charged particle α\alpha off a bound state of two charged, or one charged and one neutral, particles at small momentum transfer Δα\Delta_{\alpha} or equivalently at large intercluster distance ρα\rho_{\alpha}, is investigated within the framework of the exact three-body theory. For the three-charged-particle Green function that occurs in the exact expression for the optical potential, a recently derived expression, which is appropriate for the asymptotic region under consideration, is used. We find that for arbitrary values of the energy parameter the non-static part of the optical potential behaves for Δα→0\Delta_{\alpha} \rightarrow 0 as C1Δα+o (Δα)C_{1}\Delta_{\alpha} + o\,(\Delta_{\alpha}). From this we derive for the Fourier transform of its on-shell restriction for ρα→∞\rho_{\alpha} \rightarrow \infty the behavior −a/2ρα4+o (1/ρα4)-a/2\rho_{\alpha}^4 + o\,(1/\rho_{\alpha}^4), i.e., dipole or quadrupole terms do not occur in the coordinate-space asymptotics. This result corroborates the standard one, which is obtained by perturbative methods. The general, energy-dependent expression for the dynamic polarisability C1C_{1} is derived; on the energy shell it reduces to the conventional polarisability aa which is independent of the energy. We emphasize that the present derivation is {\em non-perturbative}, i.e., it does not make use of adiabatic or similar approximations, and is valid for energies {\em below as well as above the three-body dissociation threshold}.Comment: 35 pages, no figures, revte

    Analyzing symmetry breaking within a chaotic quantum system via Bayesian inference

    Get PDF
    Bayesian inference is applied to the level fluctuations of two coupled microwave billiards in order to extract the coupling strength. The coupled resonators provide a model of a chaotic quantum system containing two coupled symmetry classes of levels. The number variance is used to quantify the level fluctuations as a function of the coupling and to construct the conditional probability distribution of the data. The prior distribution of the coupling parameter is obtained from an invariance argument on the entropy of the posterior distribution.Comment: Example from chaotic dynamics. 8 pages, 7 figures. Submitted to PR

    Triangle Diagram with Off-Shell Coulomb T-Matrix for (In-)Elastic Atomic and Nuclear Three-Body Processes

    Get PDF
    The driving terms in three-body theories of elastic and inelastic scattering of a charged particle off a bound state of two other charged particles contain the fully off-shell two-body Coulomb T-matrix describing the intermediate-state Coulomb scattering of the projectile with each of the charged target particles. Up to now the latter is usually replaced by the Coulomb potential, either when using the multiple-scattering approach or when solving three-body integral equations. General properties of the exact and the approximate on-shell driving terms are discussed, and the accuracy of this approximation is investigated numerically, both for atomic and nuclear processes including bound-state excitation, for energies below and above the corresponding three-body dissociation threshold, over the whole range of scattering angles.Comment: 22 pages, 11 figures, figures can be obtained upon request from the Authors, revte

    First Experimental Evidence for Chaos-Assisted Tunneling in a Microwave Annular Billiard

    Full text link
    We report on first experimental signatures for chaos-assisted tunneling in a two-dimensional annular billiard. Measurements of microwave spectra from a superconducting cavity with high frequency resolution are combined with electromagnetic field distributions experimentally determined from a normal conducting twin cavity with high spatial resolution to resolve eigenmodes with properly identified quantum numbers. Distributions of so-called quasi-doublet splittings serve as basic observables for the tunneling between whispering gallery type modes localized to congruent, but distinct tori which are coupled weakly to irregular eigenstates associated with the chaotic region in phase space.Comment: 5 pages RevTex, 5 low-resolution figures (high-resolution figures: http://linac.ikp.physik.tu-darmstadt.de/heiko/chaospub.html, to be published in Phys. Rev. Let

    Boundary regularity for the Poisson equation in reifenberg-flat domains

    Full text link
    This paper is devoted to the investigation of the boundary regularity for the Poisson equation {{cc} -\Delta u = f & \text{in} \Omega u= 0 & \text{on} \partial \Omega where ff belongs to some Lp(Ω)L^p(\Omega) and Ω\Omega is a Reifenberg-flat domain of Rn.\mathbb R^n. More precisely, we prove that given an exponent α∈(0,1)\alpha\in (0,1), there exists an Δ>0\varepsilon>0 such that the solution uu to the previous system is locally H\"older continuous provided that Ω\Omega is (Δ,r0)(\varepsilon,r_0)-Reifenberg-flat. The proof is based on Alt-Caffarelli-Friedman's monotonicity formula and Morrey-Campanato theorem
    • 

    corecore