7,552 research outputs found

    Hysteresis multicycles in nanomagnet arrays

    Full text link
    We predict two new physical effects in arrays of single-domain nanomagnets by performing simulations using a realistic model Hamiltonian and physical parameters. First, we find hysteretic multicycles for such nanomagnets. The simulation uses continuous spin dynamics through the Landau-Lifshitz-Gilbert (LLG) equation. In some regions of parameter space, the probability of finding a multicycle is as high as ~0.6. We find that systems with larger and more anisotropic nanomagnets tend to display more multicycles. This result demonstrates the importance of disorder and frustration for multicycle behavior. We also show that there is a fundamental difference between the more realistic vector LLG equation and scalar models of hysteresis, such as Ising models. In the latter case, spin and external field inversion symmetry is obeyed but in the former it is destroyed by the dynamics, with important experimental implications.Comment: 7 pages, 2 figure

    A Non-Cooperative Power Control Game for Multi-Carrier CDMA Systems

    Full text link
    In this work, a non-cooperative power control game for multi-carrier CDMA systems is proposed. In the proposed game, each user needs to decide how much power to transmit over each carrier to maximize its overall utility. The utility function considered here measures the number of reliable bits transmitted per joule of energy consumed. It is shown that the user's utility is maximized when the user transmits only on the carrier with the best "effective channel". The existence and uniqueness of Nash equilibrium for the proposed game are investigated and the properties of equilibrium are studied. Also, an iterative and distributed algorithm for reaching the equilibrium (if it exists) is presented. It is shown that the proposed approach results in a significant improvement in the total utility achieved at equilibrium compared to the case in which each user maximizes its utility over each carrier independently.Comment: To appear in Proceedings of the 2005 IEEE Wireless Communications and Networking Conference, New Orleans, LA, March 13 - 17, 200

    Constraints on the Baryonic Compression and Implications for the Fraction of Dark Halo Lenses

    Get PDF
    We predict the fraction of dark halo lenses, that is, the fraction of lens systems produced by the gravitational potential of dark halos, on the basis of a simple parametric model of baryonic compression. The fraction of dark halo lenses primarily contains information on the effect of baryonic compression and the density profile of dark halos, and is expected to be insensitive to cosmological parameters and source population. The model we adopt comprises the galaxy formation probability p_g(M) which describes the global efficiency of baryonic compression and the ratio of circular velocities of galaxies to virial velocities of dark halos gamma_v=v_c/v_{vir} which means how the inner structure of dark halos is modified due to baryonic compression. The model parameters are constrained from the velocity function of galaxies and the distribution of image separations in gravitational lensing, although the degeneracy between model parameters still remains. We show that the fraction of dark halo lenses depends strongly on gamma_v and the density profile of dark halos such as inner slope alpha. This means that the observation of the fraction of dark halos can break the degeneracy between model parameters if the density profile of dark halo lenses is fully settled. On the other hand, by restricting gamma_v to physically plausible range we can predict the lower limit of the fraction of dark halo lenses on the basis of our model. Our result indicates that steeper inner cusps of dark halos (alpha >~ 1.5) or too centrally concentrated dark halos are inconsistent with the lack of dark halo lenses in observations.Comment: 10 pages, 9 figures, emulateapj5, accepted for publication in Ap

    Subharmonics and Aperiodicity in Hysteresis Loops

    Full text link
    We show that it is possible to have hysteretic behavior for magnets that does not form simple closed loops in steady state, but must cycle multiple times before returning to its initial state. We show this by studying the zero-temperature dynamics of the 3d Edwards Anderson spin glass. The specific multiple varies from system to system and is often quite large and increases with system size. The last result suggests that the magnetization could be aperiodic in the large system limit for some realizations of randomness. It should be possible to observe this phenomena in low-temperature experiments.Comment: 4 pages, 3 figure

    The Intrinsic Size of Sagittarius A* from 0.35 cm to 6 cm

    Get PDF
    We present new high-resolution observations of Sagittarius A* at wavelengths of 17.4 to 23.8 cm with the Very Large Array in A configuration with the Pie Town Very Long Baseline Array antenna. We use the measured sizes to calibrate the interstellar scattering law and find that the major axis size of the scattering law is smaller by ~6% than previous estimates. Using the new scattering law, we are able to determine the intrinsic size of Sgr A* at wavelengths from 0.35 cm to 6 cm using existing results from the VLBA. The new law increases the intrinsic size at 0.7 cm by ~20% and <5% at 0.35 cm. The intrinsic size is 13^{+7}_{-3} Schwarzschild radii at 0.35 cm and is proportional to lambda^gamma, where gamma is in the range 1.3 to 1.7.Comment: ApJL, in pres

    Modeling the Broadband Spectral Energy Distribution of the Microquasars XTE J1550-564 and H 1743-322

    Full text link
    We report results from a systematic study of the spectral energy distribution (SED) and spectral evolution of XTE J1550--564 and H 1743--322 in outburst. The jets of both sources have been directly imaged at both radio and X-ray frequencies, which makes it possible to constrain the spectrum of the radiating electrons in the jets. We modelled the observed SEDs of the jet `blobs' with synchrotron emission alone and with synchrotron emission plus inverse Compton scattering. The results favor a pure synchrotron origin of the observed jet emission. Moreover, we found evidence that the shape of the electron spectral distribution is similar for all jet `blobs' seen. Assuming that this is the case for the jet as a whole, we then applied the synchrotron model to the radio spectrum of the total emission and extrapolated the results to higher frequencies. In spite of significant degeneracy in the fits, it seems clear that, while the synchrotron radiation from the jets can account for nearly 100% of the measured radio fluxes, it contributes little to the observed X-ray emission, when the source is relatively bright. In this case, the X-ray emission is most likely dominated by emission from the accretion flows. When the source becomes fainter, however, the jet emission becomes more important, even dominant, at X-ray energies. We also examined the spectral properties of the sources during outbursts and the correlation between the observed radio and X-ray variabilities. The implication of the results is discussed.Comment: 9 pages, 11 figures, MNRAS, accepted; the paper has been much expanded (e.g., arguments strengthened, another source H 1743-322 added) and rewritten (e.g., title changed, abstract revised); the main conclusions remain unchange

    Spectral Models of Convection-Dominated Accretion Flows

    Get PDF
    For small values of the dimensionless viscosity parameter, namely α0.1\alpha\lesssim 0.1, the dynamics of non-radiating accretion flows is dominated by convection; convection strongly suppresses the accretion of matter onto the central object and transports a luminosity 103102M˙c2\sim 10^{-3}-10^{-2} \dot M c^2 from small to large radii in the flow. A fraction of this convective luminosity is likely to be radiated at large radii via thermal bremsstrahlung emission. We show that this leads to a correlation between the frequency of maximal bremsstrahlung emission and the luminosity of the source, νpeakL2/3\nu_{\rm peak} \propto L^{2/3}. Accreting black holes with X-ray luminosities 104LEddLX(0.510keV)107LEdd10^{-4} L_{Edd}\gtrsim L_X(0.5-10{\rm keV}) \gtrsim 10^{-7}L_{Edd} are expected to have hard X-ray spectra, with photon indices Γ2\Gamma\sim2, and sources with LX109LEddL_X\lesssim 10^{-9}L_{Edd} are expected to have soft spectra, with Γ3.5\Gamma\sim3.5. This is testable with {\it Chandra} and {\it XMM}.Comment: final version accepted by ApJ; significant modifications from previous versio

    Vector lattice model for stresses in granular materials

    Full text link
    A vector lattice model for stresses in granular materials is proposed. A two dimensional pile built by pouring from a point is constructed numerically according to this model. Remarkably, the pile violates the Mohr Coulomb stability criterion for granular matter, probably because of the inherent anisotropy of such poured piles. The numerical results are also compared to the earlier continuum FPA model and the (scalar) lattice qq-model

    Vortices in Thin, Compressible, Unmagnetized Disks

    Full text link
    We consider the formation and evolution of vortices in a hydrodynamic shearing-sheet model. The evolution is done numerically using a version of the ZEUS code. Consistent with earlier results, an injected vorticity field evolves into a set of long-lived vortices, each of which has a radial extent comparable to the local scale height. But we also find that the resulting velocity field has a positive shear stress, . This effect appears only at high resolution. The transport, which decays with time as t^-1/2, arises primarily because the vortices drive compressive motions. This result suggests a possible mechanism for angular momentum transport in low-ionization disks, with two important caveats: a mechanism must be found to inject vorticity into the disk, and the vortices must not decay rapidly due to three-dimensional instabilities.Comment: 8 pages, 10 figures (high resolution figures available in ApJ electronic edition

    Possible Evidence for Truncated Thin Disks in the Low-Luminosity Active Galactic Nuclei M81 and NGC 4579

    Get PDF
    M81 and NGC 4579 are two of the few low-luminosity active galactic nuclei which have an estimated mass for the central black hole, detected hard X-ray emission, and detected optical/UV emission. In contrast to the canonical ``big blue bump,'' both have optical/UV spectra which decrease with increasing frequency in a νLν\nu L_\nu plot. Barring significant reddening by dust and/or large errors in the black hole mass estimates, the optical/UV spectra of these systems require that the inner edge of a geometrically thin, optically thick, accretion disk lies at roughly 100 Schwarzschild radii. The observed X-ray radiation can be explained by an optically thin, two temperature, advection-dominated accretion flow at smaller radii.Comment: emulateapj.sty, to appear in ApJ Letter
    corecore