15,307 research outputs found
Broad Line Radio Galaxies: Jet Contribution to the nuclear X-Ray Continuum
It is shown that, for Broad Line Radio Galaxies the strength of the
non-thermal beamed radiation, when present, is always smaller than the
accretion flow by a factor < 0.7 in the 2-10 keV band. The result has been
obtained using the procedure adopted for disentangling the Flat Spectrum Radio
Quasar 3C 273 (Grandi & Palumbo 2004). Although this implies a significantly
smaller non-thermal flux in Radio Galaxies when compared to Blazars, the jet
component, if present, could be important at very high energies and thus easily
detectable with GLAST.Comment: 12 pages including 2 figures (4 files), ApJ accepte
Visual SLAM for flying vehicles
The ability to learn a map of the environment is important for numerous types of robotic vehicles. In this paper, we address the problem of learning a visual map of the ground using flying vehicles. We assume that the vehicles are equipped with one or two low-cost downlooking cameras in combination with an attitude sensor. Our approach is able to construct a visual map that can later on be used for navigation. Key advantages of our approach are that it is comparably easy to implement, can robustly deal with noisy camera images, and can operate either with a monocular camera or a stereo camera system. Our technique uses visual features and estimates the correspondences between features using a variant of the progressive sample consensus (PROSAC) algorithm. This allows our approach to extract spatial constraints between camera poses that can then be used to address the simultaneous localization and mapping (SLAM) problem by applying graph methods. Furthermore, we address the problem of efficiently identifying loop closures. We performed several experiments with flying vehicles that demonstrate that our method is able to construct maps of large outdoor and indoor environments. © 2008 IEEE
Zero-Temperature Limit of the SUSY-breaking Complexity in Diluted Spin-Glass Models
We study the SUSY-breaking complexity of the Bethe Lattice Spin-Glass in the
zero temperature limit. We consider both the Gaussian and the bimodal
distribution of the coupling constants. For the SUSY breaking
theory yields fields distributions that concentrate on integer values at low
temperatures, at variance with the unbroken SUSY theory. This concentration
takes place both in the quenched as well as in the simpler annealed
formulation.Comment: 4 pages, 2 figure
The Whole World in Your Hand: Active and Interactive Segmentation
Object segmentation is a fundamental problem
in computer vision and a powerful resource for
development. This paper presents three embodied approaches to the visual segmentation of objects. Each approach to segmentation is aided
by the presence of a hand or arm in the proximity of the object to be segmented. The first
approach is suitable for a robotic system, where
the robot can use its arm to evoke object motion. The second method operates on a wearable system, viewing the world from a human's
perspective, with instrumentation to help detect
and segment objects that are held in the wearer's
hand. The third method operates when observing
a human teacher, locating periodic motion (finger/arm/object waving or tapping) and using it
as a seed for segmentation. We show that object segmentation can serve as a key resource for
development by demonstrating methods that exploit high-quality object segmentations to develop
both low-level vision capabilities (specialized feature detectors) and high-level vision capabilities
(object recognition and localization)
Relaxation of Chemical Reactions to Stationary States in the Chemical Affinities Space
Using the mass balance equations for chemical reactions, we show how the
system relaxes towards a steady state in and out of the Onsager region. In the
chemical affinities space, after fast transients, the relaxation process is a
straight line when operating in the Onsager region, while out of this regime,
the evolution of the system is such that the projections of the evolution
equations for the forces and the shortest path on the flows coincide. For
spatially-extended systems, similar results are valid for the evolution of the
thermodynamic mode (i.e., the mode with wave-number k = 0). These results allow
us to obtain the expression for the affine connection of the space covered by
the thermodynamic forces, close to the steady states. Through the affine
connection, the nonlinear closure equations are derived.Comment: 23 pages
- …