30,031 research outputs found
A new class of -d topological superconductor with topological classification
The classification of topological states of matter depends on spatial
dimension and symmetry class. For non-interacting topological insulators and
superconductors the topological classification is obtained systematically and
nontrivial topological insulators are classified by either integer or .
The classification of interacting topological states of matter is much more
complicated and only special cases are understood. In this paper we study a new
class of topological superconductors in dimensions which has
time-reversal symmetry and a spin conservation symmetry. We
demonstrate that the superconductors in this class is classified by
when electron interaction is considered, while the
classification is without interaction.Comment: 5 pages main text and 3 pages appendix. 1 figur
Optical conductivity of nodal metals
Fermi liquid theory is remarkably successful in describing the transport and
optical properties of metals; at frequencies higher than the scattering rate,
the optical conductivity adopts the well-known power law behavior
. We have observed an unusual non-Fermi
liquid response in the ground
states of several cuprate and iron-based materials which undergo electronic or
magnetic phase transitions resulting in dramatically reduced or nodal Fermi
surfaces. The identification of an inverse (or fractional) power-law behavior
in the residual optical conductivity now permits the removal of this
contribution, revealing the direct transitions across the gap and allowing the
nature of the electron-boson coupling to be probed. The non-Fermi liquid
behavior in these systems may be the result of a common Fermi surface topology
of Dirac cone-like features in the electronic dispersion.Comment: 8 pages including supplemental informatio
Effective generation of Ising interaction and cluster states in coupled microcavities
We propose a scheme for realizing the Ising spin-spin interaction and atomic
cluster states utilizing trapped atoms in coupled microcavities. It is shown
that the atoms can interact with each other via the exchange of virtual photons
of the cavities. Through suitably tuning the parameters, an effective Ising
spin-spin interaction can be generated in this optical system, which is used to
produce the cluster states. This scheme does not need the preparation of
initial states of atoms and cavity modes, and is insensitive to cavity decay.Comment: 11pages, 2 figures, Revtex
Analysis of the X-Factor and X-Factor stretch during the completion of a golf practice session in low-handicap golfers
The X-Factor and X-Factor stretch have been positively correlated with golf long game performance. The aim of this study was to compare the X-Factor, X-Factor stretch and long game performance variables pre and following a golf practice session. A group of male golfers (n = 15, handicap = 3.3 ± 1.7) participated in the laboratory-based-study. Movement and performance variables were collected from five golf swings performed pre and following a golf practice session using a motion capture system and launch monitor respectively. Following the practice session, significant increases were observed in the X-Factor (p = 0.00, d = 0.22) and the X-Factor stretch (p = 0.02, d = 0.25). Specifically, the X-Factor increased from 52.82 ± 5.64 ° to 54.06 ± 5.61 ° following the practice session. The X-Factor stretch increased from 1.54 ± 1.05 ° to 1.90 ± 1.41 ° following the practice session. Significant differences were displayed in club head velocity (p = 0.00, d = 0.35), ball velocity (p = 0.01, d = 0.21) and actual carry distance (p = 0.00, d = 0.29) following the practice session. These findings suggest that performing multiple golf shots is not detrimental in terms of muscular fatigue in the long game performance. In actual fact, the findings demonstrate that performing 100 golf shots increases the X-Factor, X-Factor stretch patterns and performance variables which, in turn, increases long game performance. These findings can help PGA golf Professionals improve teaching practices and formulation of golf programmes and warm-up sessions
A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation
Targeting at the development of an accurate and efficient dose calculation
engine for online adaptive radiotherapy, we have implemented a finite size
pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This
new GPU-based dose engine is built on our previously published ultrafast FSPB
computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009].
Dosimetric evaluations against Monte Carlo dose calculations are conducted on
10 IMRT treatment plans (5 head-and-neck cases and 5 lung cases). For all
cases, there is improvement with the 3D-density correction over the
conventional FSPB algorithm and for most cases the improvement is significant.
Regarding the efficiency, because of the appropriate arrangement of memory
access and the usage of GPU intrinsic functions, the dose calculation for an
IMRT plan can be accomplished well within 1 second (except for one case) with
this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB
algorithm without 3D-density correction, this new algorithm, though slightly
sacrificing the computational efficiency (~5-15% lower), has significantly
improved the dose calculation accuracy, making it more suitable for online IMRT
replanning
Dynamic Response of a fast near infra-red Mueller matrix ellipsometer
The dynamic response of a near infrared Ferroelectric Liquid Crystal based
Mueller matrix ellipsometer (NIR FLC-MME) is presented. A time dependent
simulation model, using the measured time response of the individual FLCs, is
used to describe the measured temporal response. Furthermore, the impulse
response of the detector and the pre-amplifier is characterized and included in
the simulation model. The measured time-dependent intensity response of the MME
is reproduced in simulations, and it is concluded that the switching time of
the FLCs is the limiting factor for the Mueller matrix measurement time of the
FLC-based MME. Based on measurements and simulations our FLC based NIR-MME
system is estimated to operate at the maximum speed of approximately 16 ms per
Mueller matrix measurement. The FLC-MME may be operated several times faster,
since the switching time of the crystals depends on the individual crystal
being switched, and to what state it is switched. As a demonstration, the
measured temporal response of the Mueller matrix and the retardance of a thick
liquid crystal variable retarder upon changing state is demonstrated.Comment: to be published in Journal of Modern Optics 20 pages, 6 figure
- …