55 research outputs found
GEANT4 for breast dosimetry: parameters optimization study
Mean glandular dose (MGD) is the main dosimetric quantity in mammography. MGD evaluation is obtained by multiplying the entrance skin air kerma (ESAK) by normalized glandular dose (DgN) coefficients. While ESAK is an empirical quantity, DgN coefficients can only be estimated with Monte Carlo (MC) methods. Thus, a MC parameters benchmark is needed for effectively evaluating DgN coefficients. GEANT4 is a MC toolkit suitable for medical purposes that offers to the users several computational choices. In this work we investigate the GEANT4 performances testing the main PhysicsLists for medical applications. Four electromagnetic PhysicsLists were implemented: the linear attenuation coefficients were calculated for breast glandularity 0%, 50%, 100% in the energetic range 8-50 keV and DgN coefficients were evaluated. The results were compared with published data. Fit equations for the estimation of the G-factor parameter, introduced by the literature for converting the dose delivered in the heterogeneous medium to that in the glandular tissue, are proposed and the application of this parameter interaction-by-interaction or retrospectively is discussed. G4EmLivermorePhysicsList shows the best agreement for the linear attenuation coefficients both with theoretical values and published data. Moreover, excellent correlation factor ([Formula: see text]) is found for the DgN coefficients with the literature.The final goal of this study is to identify, for the first time, a benchmark of parameters that could be useful for future breast dosimetry studies with GEANT4
Energy response of GR-200A thermoluminescence dosemeters to CO-60 and to monoenergetic synchrotron radiation in the energy range 28-40 KEV
7noThe response of LiF:Mg,Cu,P thermoluminescence dosemeters (type GR-200A) to monoenergetic radiation of energy 28, 35, 38 and 40 keV was evaluated with respect to irradiation with a calibrated 60Co gamma-ray source. High-precision measurements of the relative air kerma response performed at the SYRMEP beamline of the ELETTRA synchrotron radiation facility (Trieste, Italy) showed a significant deviation of the average response to low-energy X-rays from that to 60Co, with an over-response from 6 % (at 28 keV) to 22 % (at 40 keV). These data are not consistent with literature data for these dosemeters, where model predictions gave deviation from unity of the relative air kerma response of about 10 %. The authors conclude for the need of additional determinations of the low-energy relative response of GR-200A dosemeters, covering a wider range of monoenergetic energies sampled at a fine energy step, as planned in future experiments by their group at the ELETTRA facility.Published online first 02 March 2015partially_openembargoed_20160302F. Emiro; F. Di Lillo; G. Mettivier; C. Fedon; R. Longo; G. Tromba; P. RussoF., Emiro; F., Di Lillo; G., Mettivier; Fedon, Christian; Longo, Renata; G., Tromba; P., Russ
Use of XR-QA2 radiochromic films for quantitative imaging of a synchrotron radiation beam
This work investigates the use of XR-QA2 radiochromic films for quantitative imaging of a synchrotron radiation (SR) beam. Pieces (200
7 30 mm2) of XR-QA2 film were irradiated in a plane transverse to the beam axis, at the SYRMEP beamline at ELETTRA (Trieste), with a monochromatic beam of size 170
7 3.94 mm2 (H
7 V) and energy of 28, 35, 38 or 40 keV. The response was calibrated in terms of average air kerma (1\uf02d20 mGy), measured with a calibrated ionization chamber. Films were digitized in reflectance mode using a flatbed scanner. The 16-bit red channel was used. The net\uf020reflectance was then converted to photon fluence per unit air kerma (mm-2 mGy-1). The SR beam profile was acquired also with a scintillator (GOS) based, fiberoptic coupled CCD camera as well as with a scintillator based flat panel detector. Horizontal profiles obtained with the two modalities were compared, evaluated in a ROI of 17.71
7 0.59 mm2, across the beam centre. Once corrected for flat field, the CCD profile was scaled in order to have the same average value as the normalized profile acquired with the gafchromic film. The same procedure was followed for the beam images acquired with the flat panel detector. Horizontal and vertical line profiles acquired with the radiochromic film show an uneven 2D distribution of the beam intensity, with variations in the order of 15\uf02d20% in the horizontal direction, while the statistical uncertainties evaluated for the radiochromic dose measurements were 6% at 28 keV. Larger variations up to 64% were observed in the vertical direction. The response of the radiochromic film is comparable to that of the other imaging detectors, within less than 5% variation
GEANT4 for breast dosimetry: Parameters optimization study
<p>Mean glandular dose (MGD) is the main dosimetric quantity in mammography. MGD evaluation is obtained by multiplying the entrance skin air kerma (ESAK) by normalized glandular dose (DgN) coefficients. While ESAK is an empirical quantity, DgN coefficients can only be estimated with Monte Carlo (MC) methods. Thus, a MC parameters benchmark is needed for effectively evaluating DgN coefficients. GEANT4 is a MC toolkit suitable for medical purposes that offers to the users several computational choices. In this work we investigate the GEANT4 performances testing the main PhysicsLists for medical applications. Four electromagnetic PhysicsLists were implemented: the linear attenuation coefficients were calculated for breast glandularity 0%, 50%, 100% in the energetic range 8-50 keV and DgN coefficients were evaluated. The results were compared with published data. Fit equations for the estimation of the G-factor parameter, introduced by the literature for converting the dose delivered in the heterogeneous medium to that in the glandular tissue, are proposed and the application of this parameter interaction-by-interaction or retrospectively is discussed. G4EmLivermorePhysicsList shows the best agreement for the linear attenuation coefficients both with theoretical values and published data. Moreover, excellent correlation factor (r2>0.99) is found for the DgN coefficients with the literature. The final goal of this study is to identify, for the first time, a benchmark of parameters that could be useful for future breast dosimetry studies with GEANT4.</p>
Image quality comparison between a phase-contrast synchrotron radiation breast CT and a clinical breast CT: a phantom based study
In this study we compared the image quality of a synchrotron radiation (SR) breast computed tomography (BCT) system with a clinical BCT in terms of contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), noise power spectrum (NPS), spatial resolution and detail visibility. A breast phantom consisting of several slabs of breast-adipose equivalent material with different embedded targets (i.e., masses, fibers and calcifications) was used. Phantom images were acquired using a dedicated BCT system installed at the Radboud University Medical Center (Nijmegen, The Netherlands) and the SR BCT system at the SYRMEP beamline of Elettra SR facility (Trieste, Italy) based on a photon-counting detector. Images with the SR setup were acquired mimicking the clinical BCT conditions (i.e., energy of 30 keV and radiation dose of 6.5 mGy). Images were reconstructed with an isotropic cubic voxel of 273 µm for the clinical BCT, while for the SR setup two phase-retrieval (PhR) kernels (referred to as “smooth” and “sharp”) were alternatively applied to each projection before tomographic reconstruction, with voxel size of 57 × 57 × 50 µm3. The CNR for the clinical BCT system can be up to 2-times higher than SR system, while the SNR can be 3-times lower than SR system, when the smooth PhR is used. The peak frequency of the NPS for the SR BCT is 2 to 4-times higher (0.9 mm−1 and 1.4 mm−1 with smooth and sharp PhR, respectively) than the clinical BCT (0.4 mm−1). The spatial resolution (MTF10%) was estimated to be 1.3 lp/mm for the clinical BCT, and 5.0 lp/mm and 6.7 lp/mm for the SR BCT with the smooth and sharp PhR, respectively. The smallest fiber visible in the SR BCT has a diameter of 0.15 mm, while for the clinical BCT is 0.41 mm. Calcification clusters with diameter of 0.13 mm are visible in the SR BCT, while the smallest diameter for the clinical BCT is 0.29 mm. As expected, the image quality of the SR BCT outperforms the clinical BCT system, providing images with higher spatial resolution and SNR, and with finer granularity. Nevertheless, this study assesses the image quality gap quantitatively, giving indications on the benefits associated with SR BCT and providing a benchmarking basis for its clinical implementation. In addition, SR-based studies can provide a gold-standard in terms of achievable image quality, constituting an upper-limit to the potential clinical development of a given technique
Towards breast tomography with synchrotron radiation at Elettra: First images
The aim of the SYRMA-CT collaboration is to set-up the first clinical trial of phase-contrast breast CT with synchrotron radiation (SR). In order to combine high image quality and low delivered dose a number of innovative elements are merged: a CdTe single photon counting detector, state-of-the-art CT reconstruction and phase retrieval algorithms. To facilitate an accurate exam optimization, a Monte Carlo model was developed for dose calculation using GEANT4. In this study, high isotropic spatial resolution (120 μm)3 CT scans of objects with dimensions and attenuation similar to a human breast were acquired, delivering mean glandular doses in the range of those delivered in clinical breast CT (5-25 mGy). Due to the spatial coherence of the SR beam and the long distance between sample and detector, the images contain, not only absorption, but also phase information from the samples. The application of a phase-retrieval procedure increases the contrast-to-noise ratio of the tomographic images, while the contrast remains almost constant. After applying the simultaneous algebraic reconstruction technique to low-dose phase-retrieved data sets (about 5 mGy) with a reduced number of projections, the spatial resolution was found to be equal to filtered back projection utilizing a four fold higher dose, while the contrast-to-noise ratio was reduced by 30%. These first results indicate the feasibility of clinical breast CT with SR
Internal breast dosimetry in mammography: Monte Carlo validation in homogeneous and anthropomorphic breast phantoms with a clinical mammography system
Contains fulltext :
194878.pdf (Publisher’s version ) (Open Access
- …
