1,776 research outputs found
Star formation rates of distant luminous infrared galaxies derived from Halpha and IR luminosities
We present a study of the star formation rate (SFR) for a sample of 16
distant galaxies detected by ISOCAM at 15um in the CFRS0300+00 and CFRS1400+52
fields. Their high quality and intermediate resolution VLT/FORS spectra have
allowed a proper correction of the Balmer emission lines from the underlying
absorption. Extinction estimates using the Hbeta/Hgamma and the Halpha/Hbeta
Balmer decrement are in excellent agreement, providing a robust measurement of
the instantaneous SFR based on the extinction-corrected Halpha luminosity. Star
formation has also been estimated exploiting the correlations between IR
luminosity and those at MIR and radio wavelengths. Our study shows that the
relationship between the two SFR estimates follow two distinct regimes: (1) for
galaxies with SFRIR below ~ 100Msolar/yr, the SFR deduced from Halpha
measurements is a good approximation of the global SFR and (2) for galaxies
near of ULIRGs regime, corrected Halpha SFR understimated the SFR by a factor
of 1.5 to 2. Our analyses suggest that heavily extincted regions completely
hidden in optical bands (such as those found in Arp 220) contribute to less
than 20% of the global budget of star formation history up to z=1.Comment: (1) GEPI, Obs. Meudon, France ;(2) CEA-Saclay, France ;(3) ESO,
Gemany ;(4) IAC, Spain. To appear in A&
A Large Mass of H_2 in the Brightest Cluster Galaxy in Zwicky 3146
We present the Spitzer/IRS mid-infrared spectrum of the infrared-luminous (L_(IR) = 4 × 10^(11) L_☉) brightest cluster galaxy (BCG) in the X-ray-luminous cluster Zwicky 3146 (Z3146; z = 0.29). The spectrum shows strong aromatic emission features, indicating that the dominant source of the infrared luminosity is star formation. The most striking feature of the spectrum, however, is the exceptionally strong molecular hydrogen (H_2) emission lines, which seem to be shock-excited. The line luminosities and inferred warm H_2 gas mass (~10^(10) M_☉) are 6 times larger than those of NGC 6240, the most H_2-luminous galaxy at z ≲ 0.05. Together with the large amount of cold H_2 detected previously (~10^(11) M_☉), this indicates that the Z3146 BCG contains disproportionately large amounts of both warm and cold H_2 gas for its infrared luminosity, which may be related to the intracluster gas cooling process in the cluster core
The far-infrared/submillimeter properties of galaxies located behind the Bullet cluster
The Herschel Lensing Survey (HLS) takes advantage of gravitational lensing by massive galaxy clusters to sample a population of high-redshift galaxies which are too faint to be detected above the confusion limit of current far-infrared/submillimeter telescopes. Measurements from 100–500 μm bracket the peaks of the far-infrared spectral energy distributions of these galaxies, characterizing their infrared luminosities and star formation rates. We introduce initial results from our science demonstration phase observations, directed toward the Bullet cluster (1E0657-56). By combining our observations with LABOCA 870 μm and AzTEC 1.1 mm data we fully constrain the spectral energy distributions of 19 MIPS 24 μm-selected galaxies which are located behind the cluster. We find that their colors are best fit using templates based on local galaxies with systematically lower infrared luminosities. This suggests that our sources are not like local ultra-luminous infrared galaxies in which vigorous star formation is contained in a compact highly dust-obscured region. Instead, they appear to be scaled up versions of lower luminosity local galaxies with star formation occurring on larger physical scales
The Herschel Lensing Survey (HLS): Overview
The Herschel Lensing Survey (HLS) will conduct deep PACS and SPIRE imaging of ∼40 massive clusters of galaxies. The strong gravitational lensing power of these clusters will enable us to penetrate through the confusion noise, which sets the ultimate limit on our ability to probe the
Universe with Herschel. Here we present an overview of our survey and a summary of the major results from our science demonstration phase (SDP) observations of the Bullet cluster (z = 0.297). The SDP data are rich and allow us to study not only the background high-redshift galaxies
(e.g., strongly lensed and distorted galaxies at z = 2.8 and 3.2) but also the properties of cluster-member galaxies. Our preliminary analysis shows a great diversity of far-infrared/submillimeter spectral energy distributions (SEDs), indicating that we have much to learn with Herschel about the properties of galaxy SEDs. We have also detected the Sunyaev-Zel’dovich (SZ) effect increment with the SPIRE data. The success of this SDP program demonstrates the great potential of the Herschel Lensing Survey to produce exciting results in a variety of science areas
Matching Seeds to Needs - female farmers adapt to a changing climate in Ethiopia
Between 2010 and 2012 Bioversity International worked with partners and stakeholders in Ethiopia to develop an innovative low-cost strategy for managing risks to agricultural systems posed by the adverse effects of climate change. The objective, which the project indeed achieved, was to decrease vulnerability and enhance adaptive capacity in smallholder farming communities by increasing the intraspecific diversity of important food security crops using barley and durum wheat
A Large Mass of H2 in the Brightest Cluster Galaxy in Zwicky 3146
We present the Spitzer/IRS mid-infrared spectrum of the infrared-luminous
(L_{IR}=4e11 L_sun) brightest cluster galaxy (BCG) in the X-ray-luminous
cluster Z3146 (z=0.29). The spectrum shows strong aromatic emission features,
indicating that the dominant source of the infrared luminosity is star
formation. The most striking feature of the spectrum, however, is the
exceptionally strong molecular hydrogen (H2) emission lines, which seem to be
shock-excited. The line luminosities and inferred warm H2 gas mass (~1e10
M_sun) are 6 times larger than those of NGC 6240, the most H2-luminous galaxy
at z <~ 0.1. Together with the large amount of cold H2 detected previously
(~1e11 M_sun), this indicates that the Z3146 BCG contains disproportionately
large amounts of both warm and cold H2 gas for its infrared luminosity, which
may be related to the intracluster gas cooling process in the cluster core.Comment: 13 pages, 3 figures, 1 table; Accepted for publication in ApJ
Deep Herschel view of obscured star formation in the Bullet cluster
We use deep, five band (100–500 μm) data from the Herschel Lensing Survey (HLS) to fully constrain the obscured star formation rate, SFR_(FIR), of galaxies in the Bullet cluster (z = 0.296), and a smaller background system (z = 0.35) in the same field. Herschel detects 23 Bullet cluster members with a total SFRFIR = 144±14 M_☉ yr^(-1). On average, the background system contains brighter far-infrared (FIR) galaxies, with ~50% higher SFRFIR (21 galaxies; 207 ± 9 M_☉ yr^(-1)). SFRs extrapolated from 24 μm flux via recent templates (SFR_(24 µm)) agree well with SFRFIR for ~60% of the cluster galaxies. In the remaining ~40%, SFR24 µm underestimates SFR_(FIR) due to a significant excess in observed S_(100)/S_(24) (rest frame S_(75)/S_(18)) compared to templates of the same FIR luminosity
An emergency vehicles allocation model for major industrial disasters
One of the main issues in the event of a major industrial disaster (fire, explosion or toxic gas dispersion) is to efficacy manage emergencies by considering both medical and logistics issues. From a logistics point of view the purpose of this work is to correctly address critical patients from the emergency site to the most suitable hospitals. A Mixed Integer Programming (MIP) Model is proposed, able to determine the optimal number and allocation of emergency vehicles involved in relief operations, in order to maximize the number of successfully treated injured patients. Moreover, a vehicles reallocation strategy has been developed which takes into account the evolution of the patients health conditions. Alternative scenarios have been tested considering a dynamic version of the Emergency Vehicles Allocation Problem, in which patient health conditions evolves during the rescue process. A company located in Italy has been considered as case-study in order to evaluate the performance of the proposed methodology
Crowding effect on helix-coil transition: beyond entropic stabilization
We report circular dichroism measurements on the helix-coil transition of
poly(L-glutamic acid) in solution with polyethylene glycol (PEG) as a crowding
agent. Using small angle neutron scattering, PEG solutions have been
characterized and found to be well described by the picture of a transient
network of mesh size , usual for semi-diluted chains in good solvent. We
show that the increase of PEG concentration stabilizes the helices and
increases the transition temperature. But more unexpectedly we also notice that
the increase of crowding agent concentration reduces the mean helix extent at
the transition, or in other words reduces its cooperative feature. This result
cannot be accounted for by an entropic stabilization mechanism. Comparing the
mean length of helices at the transition and the mesh size of the PEG network,
our results strongly suggest two regimes: helices shorter or longer than the
mesh size
- …