681 research outputs found
The roles of poly(ADP-ribose)-metabolizing enzymes in alkylation-induced cell death
Abstract.: Poly(ADP-ribose) (PAR) has been identified as a DNA damage-inducible cell death signal upstream of apoptosis-inducing factor (AIF). PAR causes the translocation of AIF from mitochondria to the nucleus and triggers cell death. In living cells, PAR molecules are subject to dynamic changes pending on internal and external stress factors. Using RNA interference (RNAi), we determined the roles of poly(ADP-ribose) polymerases-1 and -2 (PARP-1, PARP-2) and poly(ADP-ribose) glycohydrolase (PARG), the key enzymes configuring PAR molecules, in cell death induced by an alkylating agent. We found that PARP-1, but not PARP-2 and PARG, contributed to alkylation-induced cell death. Likewise, AIF translocation was only affected by PARP-1. PARP-1 seems to play a major role configuring PAR as a death signal involving AIF translocation regardless of the death pathway involve
New fully evolutionary models for asteroseismology of ultra-massive white dwarf stars
Ultra-massive hydrogen-rich (DA spectral type) white dwarf (WD) stars
() coming from single-star evolution are expected to
harbor cores made of O and Ne, resulting from semi-degenerate
carbon burning when the progenitor star evolves through the super asymptotic
giant branch (S-AGB) phase. These stars are expected to be crystallized by the
time they reach the ZZ Ceti instability strip ( K).
Theoretical models predict that crystallization leads to a separation of
O and Ne in the core of ultra-massive WDs, which impacts their
pulsational properties. This property offers a unique opportunity to study the
processes of crystallization. Here, we present the first results of a detailed
asteroseismic analysis of the best-studied ultra-massive ZZ Ceti star
BPM~37093. As a second step, we plan to repeat this analysis using
ultra-massive DA WD models with C/O cores in order to study the possibility of
elucidating the core chemical composition of BPM~37093 and shed some light on
its possible evolutionary origin. We also plan to extend this kind of analyses
to other stars observed from the ground and also from space missions like
Kepler and TESS.Comment: 4 pages, 2 tables, 2 figures, poster contribution at the conference
"Stars and their variability observed from space - Celebrating the 5th
anniversary of BRITE-Constellation", Vienna, Austria, August 19 - 23, 2019.
Eds: C. Neiner, W. Weiss, D. Baade, E. Griffin, C. Lovekin, A. Moffa
Thermohaline mixing and the photospheric composition of low-mass giant stars
We compute full evolutionary sequences of red giant branch stars close to the
luminosity bump by including state of the art composition transport
prescriptions for the thermohaline mixing regimes. In particular we adopt a
self-consistent double-diffusive convection theory, that allows to handle the
instabilities that arise when thermal and composition gradients compete against
each other, and a very recent empirically motivated and parameter free
asymptotic scaling law for thermohaline composition transport. In agreement
with previous works, we find that during the red giant stage, a thermohaline
instability sets in shortly after the hydrogen burning shell (HBS) encounters
the chemical discontinuity left behind by the first dredge-up. We also find
that the thermohaline unstable region, initially appearing at the exterior wing
of the HBS, is unable to reach the outer convective envelope, with the
consequence that no mixing of elements that produces a non-canonical
modification of the stellar surface abundances occurs. Also in agreement with
previous works, we find that by artificially increasing the mixing efficiency
of thermohaline regions it is possible to connect both unstable regions, thus
affecting the photospheric composition. However, we find that in order to
reproduce the observed abundances of red giant branch stars close to the
luminosity bump, thermohaline mixing efficiency has to be artificially
increased by about 4 orders of magnitude from that predicted by recent 3D
numerical simulations of thermohaline convection close to astrophysical
environments. From this we conclude the chemical abundance anomalies of red
giant stars cannot be explained on the basis of thermohaline mixing alone.Comment: 7 pages, 6 figures, accepted for publication in A&
Probing the Structure of Kepler ZZ Ceti Stars with Full Evolutionary Models-based Asteroseismology
We present an asteroseismological analysis of four ZZ Ceti stars observed with the Kepler spacecraft: GD 1212, SDSS J113655.17+040952.6, KIC 11911480, and KIC 4552982, based on a grid of full evolutionary models of DA white dwarf (WD) stars. We employ a grid of carbon-oxygen core models, characterized by a detailed and consistent chemical inner profile for the core and the envelope. In addition to the observed periods, we take into account other information from the observational data, such as amplitudes, rotational splittings, and period spacing, as well as photometry and spectroscopy. For each star, we present an asteroseismological model that closely reproduces their observed properties. The asteroseismological stellar mass and effective temperature of the target stars are (0.632 ± 0.027 M, 10737 ± 73 K) for GD 1212, (0.745 ± 0.007 M, 11110 ± 69 K) for KIC 4552982, (05480 ± 0.01 M, 12,721 ± 228 K) for KIC11911480, and (0.570 ± 0.01 M, 12,060 ± 300 K) for SDSS J113655.17+040952.6. In general, the asteroseismological values are in good agreement with the spectroscopy. For KIC 11911480 and SDSS J113655.17+040952.6 we derive a similar seismological mass, but the hydrogen envelope is an order of magnitude thinner for SDSS J113655.17+040952.6, which is part of a binary system and went through a common envelope phase
Optical identification of the companion to PSR J1911-5958A, the pulsar binary in the outskirts of NGC 6752
We report on the identification of the optical counterpart of the binary
millisecond pulsar PSR J1911-5958A, located in the outskirts of the globular
cluster NGC 6752. At the position of the pulsar we find an object with V=22.08,
B-V=0.38, U-B=-0.49. The object is blue with respect to the cluster main
sequence by 0.8 magnitudes in B-V. We argue that the object is the white dwarf
companion of the pulsar. Comparison with white dwarf cooling models shows that
this magnitude and colors are consistent with a low-mass white dwarf at the
distance of NGC 6752. If associated with NGC 6752, the white dwarf is
relatively young, <2 Gyr, which sets constraints on the formation of the binary
and its ejection from the core of the globular cluster.Comment: Accepted for publication in A&A Letters (September 1st, 2003
The roles of poly(ADP-ribose)-metabolizing enzymes in alkylation-induced cell death
Poly(ADP-ribose) (PAR) has been identified as a DNA damage-inducible cell death signal upstream of apoptosis-inducing factor (AIF). PAR causes the translocation of AIF from mitochondria to the nucleus and triggers cell death. In living cells, PAR molecules are subject to dynamic changes pending on internal and external stress factors. Using RNA interference (RNAi), we determined the roles of poly(ADP-ribose) polymerases-1 and -2 (PARP-1, PARP-2) and poly(ADP-ribose) glycohydrolase (PARG), the key enzymes configuring PAR molecules, in cell death induced by an alkylating agent. We found that PARP-1, but not PARP-2 and PARG, contributed to alkylation-induced cell death. Likewise, AIF translocation was only affected by PARP-1. PARP-1 seems to play a major role configuring PAR as a death signal involving AIF translocation regardless of the death pathway involved
Slowly cooling white dwarfs in M13 from stable hydrogen burning
White dwarfs (WDs) are the final evolutionary product of the vast majority of stars in the Universe. They are electron-degenerate structures characterized by no stable thermonuclear activity, and their evolution is generally described as a pure cooling process. Their cooling rate is adopted as cosmic chronometer to constrain the age of several Galactic populations, including the disk, globular and open clusters. By analysing high-resolution photometric data of two very similar Galactic globular clusters (M3 and M13), we find a clear-cut and unexpected overabundance of bright WDs in M13. Theoretical models suggest that, consistent with the horizontal branch morphology, this overabundance is due to a slowing down of the cooling process in ~70% of the WDs in M13, caused by stable thermonuclear burning in their residual hydrogen-rich envelope. The presented observational evidence of quiescent thermonuclear activity occurring in cooling WDs brings new attention on the use of the WD cooling rate as cosmic chronometer for low-metallicity environments
Labels direct infantsâ attention to commonalities during novel category learning
Recent studies have provided evidence that labeling can influence the outcome of infantsâ visual categorization. However, what exactly happens during learning remains unclear. Using eye-tracking, we examined infantsâ attention to object parts during learning. Our analysis of looking behaviors during learning provide insights going beyond merely observing the learning outcome. Both labeling and non-labeling phrases facilitated category formation in 12-month-olds but not 8-month-olds (Experiment 1). Non-linguistic sounds did not produce this effect (Experiment 2). Detailed analyses of infantsâ looking patterns during learning revealed that only infants who heard labels exhibited a rapid focus on the object part successive exemplars had in common. Although other linguistic stimuli may also be beneficial for learning, it is therefore concluded that labels have a unique impact on categorization
Effect of biochar on the mirobial enzymes activity of soil with Eucalyptus.
Session 5- Bacterial and Plant Physiology - Poster V.5
- âŠ