24 research outputs found

    Effectiveness of probiotics in the prevention of carious lesions during treatment with fixed orthodontic appliances.

    Full text link

    Common variants in Alzheimer's disease and risk stratification by polygenic risk scores.

    Get PDF
    Funder: Funder: Fundación bancaria ‘La Caixa’ Number: LCF/PR/PR16/51110003 Funder: Grifols SA Number: LCF/PR/PR16/51110003 Funder: European Union/EFPIA Innovative Medicines Initiative Joint Number: 115975 Funder: JPco-fuND FP-829-029 Number: 733051061Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease

    Signal strength and climate calibration of a European tree-ring isotope network

    No full text
    We present the first European network of tree ring δ 13C and δ 18O, containing 23 sites from Finland to Morocco. Common climate signals are found over broad climatic-ecological ranges. In temperate regions we find positive correlations with summer maximum temperatures and negative correlations with summer precipitation and Palmer Drought Severity Indices (PDSI) with no obvious species-specific differences. Regional δ 13C and δ 18O chronologies share high common variance in year-to-year variations. Long-term variations, however, exhibit differences that may reflect spatial variability in environmental forcings, age trends and/or plant physiological responses to increasing atmospheric CO2 concentration. Rotated principal component analysis (RPCA) and climate field correlations enable the identification of four sub-regions in the δ 18O network - northern and eastern Central Europe, Scandinavia and the western Mediterranean. Regional patterns in the δ 13C network are less clear and are timescale dependent. Our results indicate that future reconstruction efforts should concentrate on δ 18O data in the identified European regions

    Water-use efficiency and transpiration across European forests during the Anthropocene

    No full text
    The Earth’s carbon and hydrologic cycles are intimately coupled by gas exchange through plant stomata. However, uncertainties in the magnitude and consequences of the physiological responses of plants to elevated CO2 in natural environments hinders modelling of terrestrial water cycling and carbon storage. Here we use annually resolved long-term 13C tree-ring measurements across a European forest network to reconstruct the physiologically driven response of intercellular CO2 (Ci) caused by atmospheric CO2 (Ca) trends. When removing meteorological signals from the 13C measurements, we find that trees across Europe regulated gas exchange so that for one ppmv atmospheric CO2 increase, Ci increased by 0.76 ppmv, most consistent with moderate control towards a constant Ci=Ca ratio. This response corresponds to twentieth-century intrinsic water-use efficiency (iWUE) increases of 14 ±10 and 22 ± 6% at broadleaf and coniferous sites, respectively. An ensemble of process-based global vegetation models shows similar CO2 effects on iWUE trends. Yet, when operating these models with climate drivers reintroduced, despite decreased stomatal opening, 5%increases in European forest transpiration are calculated over the twentieth century.This counterintuitive result arises from lengthened growing seasons, enhanced evaporative demand in a warming climate, and increased leaf area, which together oppose effects of CO2-induced stomatal closure. Our study questions changes to the hydrological cycle, such as reductions in transpiration and air humidity, hypothesized to result from plant responses to anthropogenic emissions

    Covalent Attachment of Heme to the Protein Moiety in an Insect E75 Nitric Oxide Sensor

    No full text
    We have recombinantly expressed and purified the ligand binding domains (LBDs) of four insect nuclear receptors of the E75 family. The Drosophila melanogaster and Bombyx mori nuclear receptors were purified as ferric hemoproteins with Soret maxima at 424 nm, whereas their ferrous form had a Soret maximum at 425 nm that responds to ·NO and CO binding. In contrast, the purified LBD of Oncopeltus fasciatus displayed a Soret maximum at 415 nm for the ferric protein that shifted to 425 nm in its ferrous state. Binding of ·NO to the heme moiety of D. melanogaster and B. mori E75 LBD resulted in the appearance of a peak at 385 nm, whereas this peak appeared at 416 nm in the case of the O. fasciatus hemoprotein, resembling the behaviour displayed by its human homolog Rev-erbβ. HPLC analysis revealed that, unlike the D. melanogaster and B. mori counterparts, the heme group of O. fasciatus is covalently attached to the protein through the side-chains of two amino acids. The large sequence homology with O. fasciatus E75 led us to clone and express the LBD of Blattella germanica, which established that its spectral properties closely resemble those of O. fasciatus and that it also has the heme group covalently bound to the protein. Hence, ·NO/CO regulation of the transcriptional activity of these nuclear receptors might be differently controlled among various insect species. In addition, covalent heme binding provides strong evidence that at least some of these nuclear receptors function as diatomic gas sensors rather than heme sensors. Finally, our findings expand the classes of hemoproteins in which the heme group is normally covalently attached to the polypeptide chain
    corecore