4,055 research outputs found
Femtosecond spectroscopy of the first events of the photochemical cycle in bacteriorhodopsin
The first steps in the photochemistry of bacteriorhodopsin (BR) are investigated with light pulses of 160 fs duration. Four samples are studied: (i) the purple membrane, (ii) deuterated purple membrane, (iii) BR trimers and (iv) BR monomers. In all samples the first intermediate J is formed within 430±50 fs. No isotope effect is observed in the formation of J upon deuteration, in contrast to previous reports with much higher excitation energies. Thus proton movement to or from the retinal Schiff's base is not relevant during the first step. Comparing the data for trimeric and monomeric BR suggests an upper limit of 50 fs for the transfer of excitation energy from the excitonically coupled trimer to a single retinal chromophore
Cigarette smoking is associated with amplified age-related volume loss in subcortical brain regions
BACKGROUND:
Magnetic resonance imaging studies of cigarette smoking-related effects on human brain structure have primarily employed voxel-based morphometry, and the most consistently reported finding was smaller volumes or lower density in anterior frontal regions and the insula. Much less is known about the effects of smoking on subcortical regions. We compared smokers and non-smokers on regional subcortical volumes, and predicted that smokers demonstrate greater age-related volume loss across subcortical regions than non-smokers.
METHODS:
Non-smokers (n=43) and smokers (n=40), 22-70 years of age, completed a 4T MRI study. Bilateral total subcortical lobar white matter (WM) and subcortical nuclei volumes were quantitated via FreeSurfer. In smokers, associations between smoking severity measures and subcortical volumes were examined.
RESULTS:
Smokers demonstrated greater age-related volume loss than non-smokers in the bilateral subcortical lobar WM, thalamus, and cerebellar cortex, as well as in the corpus callosum and subdivisions. In smokers, higher pack-years were associated with smaller volumes of the bilateral amygdala, nucleus accumbens, total corpus callosum and subcortical WM.
CONCLUSIONS:
Results provide novel evidence that chronic smoking in adults is associated with accelerated age-related volume loss in subcortical WM and GM nuclei. Greater cigarette quantity/exposure was related to smaller volumes in regions that also showed greater age-related volume loss in smokers. Findings suggest smoking adversely affected the structural integrity of subcortical brain regions with increasing age and exposure. The greater age-related volume loss in smokers may have implications for cortical-subcortical structural and/or functional connectivity, and response to available smoking cessation interventions
Brain GABA and Glutamate Concentrations Following Chronic Gabapentin Administration: A Convenience Sample Studied During Early Abstinence From Alcohol.
Gabapentin (GBP), a GABA analog that may also affect glutamate (Glu) production, can normalize GABA and Glu tone during early abstinence from alcohol, effectively treating withdrawal symptoms and facilitating recovery. Using in vivo magnetic resonance spectroscopy, we tested the degree to which daily GBP alters regional brain GABA and Glu levels in short-term abstinent alcohol-dependent individuals. Regional metabolite levels were compared between 13 recently abstinent alcohol-dependent individuals who had received daily GBP for at least 1 week (GBP+) and 25 matched alcohol-dependent individuals who had not received GBP (GBP-). Magnetic resonance spectra from up to five different brain regions were analyzed to yield absolute GABA and Glu concentrations. GABA and Glu concentrations in the parieto-occipital cortex were not different between GBP- and GBP+. Glu levels in anterior cingulate cortex, dorsolateral prefrontal cortex, and basal ganglia did not differ between GBP- and GBP+. However, in a subgroup of individuals matched on age, sex, and abstinence duration, GBP+ had markedly lower Glu in the frontal white matter (WM) than GBP-, comparable to concentrations found in light/non-drinking controls. Furthermore, lower frontal WM Glu in GBP+ correlated with a higher daily GBP dose. Daily GBP treatment at an average of 1,600 mg/day for at least 1 week was not associated with altered cortical GABA and Glu concentrations during short-term abstinence from alcohol, but with lower Glu in frontal WM. GBP for the treatment of alcohol dependence may work through reducing Glu in WM rather than increasing cortical GABA
Direct Measurement of 2D and 3D Interprecipitate Distance Distributions from Atom-Probe Tomographic Reconstructions
Edge-to-edge interprecipitate distance distributions are critical for
predicting precipitation strengthening of alloys and other physical phenomena.
A method to calculate this 3D distance and the 2D interplanar distance from
atom-probe tomographic data is presented. It is applied to nanometer-sized
Cu-rich precipitates in an Fe-1.7 at.% Cu alloy. Experimental interprecipitate
distance distributions are discussed
Frontal Metabolite Concentration Deficits in Opiate Dependence Relate to Substance Use, Cognition, and Self-Regulation.
ObjectiveProton magnetic resonance spectroscopy (1H MRS) in opiate dependence showed abnormalities in neuronal viability and glutamate concentration in the anterior cingulate cortex (ACC). Metabolite levels in dorsolateral prefrontal cortex (DLPFC) or orbitofrontal cortex (OFC) and their neuropsychological correlates have not been investigated in opiate dependence.MethodsSingle-volume proton MRS at 4 Tesla and neuropsychological testing were conducted in 21 opiate-dependent individuals (OD) on buprenorphine maintenance therapy. Results were compared to 28 controls (CON) and 35 alcohol-dependent individuals (ALC), commonly investigated treatment-seekers providing context for OD evaluation. Metabolite concentrations were measured from ACC, DLPFC, OFC and parieto-occipital cortical (POC) regions.ResultsCompared to CON, OD had lower concentrations of N-acetylaspartate (NAA), glutamate (Glu), creatine +phosphocreatine (Cr) and myo-Inositol (mI) in the DLPFC and lower NAA, Cr, and mI in the ACC. OD, ALC, and CON were equivalent on metabolite levels in the POC and γ-aminobutyric acid (GABA) concentration did not differ between groups in any region. In OD, prefrontal metabolite deficits in ACC Glu as well as DLPFC NAA and choline containing metabolites (Cho) correlated with poorer working memory, executive and visuospatial functioning; metabolite deficits in DLPFC Glu and ACC GABA and Cr correlated with substance use measures. In the OFC of OD, Glu and choline-containing metabolites were elevated and lower Cr concentration related to higher nonplanning impulsivity. Compared to 3 week abstinent ALC, OD had significant DLPFC metabolite deficits.ConclusionThe anterior frontal metabolite profile of OD differed significantly from that of CON and ALC. The frontal lobe metabolite abnormalities in OD and their neuropsychological correlates may play a role in treatment outcome and could be explored as specific targets for improved OD treatment
Locating Star-Forming Regions in Quasar Host Galaxies
We present a study of the morphology and intensity of star formation in the
host galaxies of eight Palomar-Green quasars using observations with the Hubble
Space Telescope. Our observations are motivated by recent evidence for a close
relationship between black hole growth and the stellar mass evolution in its
host galaxy. We use narrow-band [O II] 3727, H, [O III]
5007 and Pa images, taken with the WFPC2 and NICMOS
instruments, to map the morphology of line-emitting regions, and, after
extinction corrections, diagnose the excitation mechanism and infer
star-formation rates. Significant challenges in this type of work are the
separation of the quasar light from the stellar continuum and the
quasar-excited gas from the star-forming regions. To this end, we present a
novel technique for image decomposition and subtraction of quasar light. Our
primary result is the detection of extended line-emitting regions with sizes
ranging from 0.5 to 5 kpc and distributed symmetrically around the nucleus,
powered primarily by star formation. We determine star-formation rates of order
a few tens of M/yr. The host galaxies of our target quasars have
stellar masses of order M and specific star formation rates
on a par with those of M82 and luminous infrared galaxies. As such they fall at
the upper envelope or just above the star-formation mass sequence in the
specific star formation vs stellar mass diagram. We see a clear trend of
increasing star formation rate with quasar luminosity, reinforcing the link
between the growth of the stellar mass of the host and the black hole mass
found by other authors.Comment: Accepted for publication in M.N.R.A.
Femtosecond spectroscopy of the first events of the photochemical cycle in bacteriorhodopsin
The first steps in the photochemistry of bacteriorhodopsin (BR) are investigated with light pulses of 160 fs duration. Four samples are studied: (i) the purple membrane, (ii) deuterated purple membrane, (iii) BR trimers and (iv) BR monomers. In all samples the first intermediate J is formed within 430±50 fs. No isotope effect is observed in the formation of J upon deuteration, in contrast to previous reports with much higher excitation energies. Thus proton movement to or from the retinal Schiff's base is not relevant during the first step. Comparing the data for trimeric and monomeric BR suggests an upper limit of 50 fs for the transfer of excitation energy from the excitonically coupled trimer to a single retinal chromophore
Role of tyrosine M210 in the initial charge separation of reaction centers of Rhodobacter sphaeroides
Femtosecond spectroscopy was used in combination with site-directed mutagenesis to study the
influence of tyrosine M210 (YM210) on the primary electron transfer in the reaction center of Rhodobacter
sphaeroides. The exchange of YM210 to phenylalanine caused the time constant of primary electron transfer
to increase from 3.5 f 0.4 ps to 16 f 6 ps while the exchange to leucine increased the time constant even
more to 22 f 8 ps. The results suggest that tyrosine M210 is important for the fast rate of the primary
electron transfer
- …