334 research outputs found

    Ensuring confidence in radionuclide-based sediment chronologies and bioturbation rates

    Get PDF
    Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Estuarine, Coastal and Shelf Science 71 (2007): 537-544, doi:10.1016/j.ecss.2006.09.006.Sedimentary records of naturally occurring and fallout-derived radionuclides are widely used as tools for estimating both the ages of recent sediments and rates of sedimentation and bioturbation. Developing these records to the point of data interpretation requires careful sample collection, processing, analysis and data modeling. In this work, we document a number of potential pitfalls that can impact sediment core records and their interpretation. This paper is not intended as an exhaustive treatment of these potential problems. Rather, the emphasis is on potential problems that are not well documented in the literature, as follows: 1) The mere sampling of sediment cores at a resolution that is too coarse can result in an apparent diffusive mixing of the sedimentary record at rates comparable to diffusive bioturbation rates observed in many locations; 2) 210Pb profiles in slowly accumulating sediments can easily be misinterpreted to be driven by sedimentation, when in fact bioturbation is the dominant control. Multiple isotopes of different half lives and/or origin may help to distinguish between these two possible interpretations; 3) Apparent mixing can occur due simply to numerical artifacts inherent in the finite difference approximations of the advection diffusion equation used to model sedimentation and bioturbation. Model users need to be aware of this potential problem. Solutions to each of these potential pitfalls are offered to ensure the best possible sediment age estimates and/or sedimentation and bioturbation rates can be obtained.Thanks to the U.S. Geological Survey Coastal and Marine Geology Program, the Andrew F. Mellon Foundation, the Earth Institute Postdoctoral Fellowship Program at Columbia University, and the National Science Foundation for funding

    Glacial influence on the geochemistry of riverine iron fluxes to the Gulf of Alaska and effects of deglaciation

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Geophysical Research Letters 38 (2011): L16605, doi:10.1029/2011GL048367.Riverine iron (Fe) derived from glacial weathering is a critical micronutrient source to ecosystems of the Gulf of Alaska (GoA). Here we demonstrate that the source and chemical nature of riverine Fe input to the GoA could change dramatically due to the widespread watershed deglaciation that is underway. We examine Fe size partitioning, speciation, and isotopic composition in tributaries of the Copper River which exemplify a long-term GoA watershed evolution from one strongly influenced by glacial weathering to a boreal-forested watershed. Iron fluxes from glacierized tributaries bear high suspended sediment and colloidal Fe loads of mixed valence silicate species, with low concentrations of dissolved Fe and dissolved organic carbon (DOC). Iron isotopic composition is indicative of mechanical weathering as the Fe source. Conversely, Fe fluxes from boreal-forested systems have higher dissolved Fe concentrations corresponding to higher DOC concentrations. Iron colloids and suspended sediment consist of Fe (hydr)oxides and organic complexes. These watersheds have an iron isotopic composition indicative of an internal chemical processing source. We predict that as the GoA watershed evolves due to deglaciation, so will the source, flux, and chemical nature of riverine Fe loads, which could have significant ramifications for Alaskan marine and freshwater ecosystems.We appreciate support from the USGS CMGP, NCCWSC, and the Mendenhall Postdoctoral Program

    Energetics of Tev Blazars and Physical Constraints on their Emission Regions

    Full text link
    Using multi-frequency spectra from TeV blazars in quiescent states, we obtain the physical parameters of the emission region of blazars within the framework of the one-zone synchrotron self-Compton (SSC) model. We numerically calculate the steady-state energy spectra of electrons by self-consistently taking into account the effects of radiative cooling with a proper account of the Klein-Nishina effects. Here electrons are assumed to be injected with a power-law spectrum and to escape on a finite time scale, which naturally leads to the existence of a break energy scale. Although we do not use time variabilities but utilize a model of electron escape to constrain the size of the emission region, the resultant size turns out to be similar to that obtained based on time variabilities. Through detailed comparison of the predicted emission spectra with observations, we find that for Mrk 421, Mrk 501, and PKS 2155--304, the energy density of relativistic electrons is about an order of magnitude larger than that of magnetic fields with an uncertainty within a factor of a few.Comment: Accepted for publication in Ap

    Stuck in the Past? Rumination-Related Memory Integration

    Get PDF
    Memories connected to ruminative concerns repetitively capture attention, even in situations designed to alter them. However, recent research on memory updating suggests that memory for benign substitutes (e.g., reinterpretations) might be facilitated by integration with the ruminative memories. As a first approach, two experiments (Ns = 72) mimicked rumination-related memories with rumination-themed stimuli and an imagery task. College undergraduates screened for ruminative status first studied and imaged ruminative cue-target word pairs, and then in a second phase they studied the same cues re-paired with benign targets (along with new and repeated pairs). On the test of cued recall of benign targets, they judged whether each recalled word had been repeated or changed across the two phases (or was new in the second phase). When target changes were not remembered, recall of benign targets revealed proactive interference that was insensitive to ruminative status. However, when participants remembered change and the ruminative targets, their recall of benign targets was facilitated, particularly if they identified as ruminators (Experiment 1). When the test simply asked for recall of either or both targets (Experiment 2), ruminators recalled both targets more frequently than did others. These outcomes suggest that ruminative memories might provide bridges to remembering associated benign memories, such as reinterpretations, under conditions consistent with everyday ruminative retrieval

    Glacial flour dust storms in the Gulf of Alaska : hydrologic and meteorological controls and their importance as a source of bioavailable iron

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L06602, doi:10.1029/2010GL046573.Iron is an essential micronutrient that limits primary productivity in much of the ocean, including the Gulf of Alaska (GoA). However, the processes that transport iron to the ocean surface are poorly quantified. We combine satellite and meteorological data to provide the first description of widespread dust transport from coastal Alaska into the GoA. Dust is frequently transported from glacially-derived sediment at the mouths of several rivers, the most prominent of which is the Copper River. These dust events occur most frequently in autumn, when coastal river levels are low and riverbed sediments are exposed. The dust plumes are transported several hundred kilometers beyond the continental shelf into iron-limited waters. We estimate the mass of dust transported from the Copper River valley during one 2006 dust event to be between 25–80 ktons. Based on conservative estimates, this equates to a soluble iron loading of 30–200 tons. We suggest the soluble Fe flux from dust originating in glaciofluvial sediment deposits from the entire GoA coastline is two to three times larger, and is comparable to the annual Fe flux to GoA surface waters from eddies of coastal origin. Given that glaciers are retreating in the coastal GoA region and in other locations, it is important to examine whether fluxes of dust are increasing from glacierized landscapes to the ocean, and to assess the impact of associated Fe on marine ecosystems.We appreciate support from the USGS CMGP, NCCWSC, the Mendenhall postdoc program, the Woods Hole PEP intern program, and from NASA‐IDS

    Models for Nonthermal Photon Spectra

    Full text link
    We describe models of nonthermal photon emission from a homogeneous distribution of relativistic electrons and protons. Contributions from the synchrotron, inverse Compton, nonthermal bremsstrahlung and neutral-pion decay processes are computed separately using a common parameterization of the underlying distribution of nonthermal particles. The models are intended for use in fitting spectra from multi-wavelength observations and are designed to be accurate and efficient. Although our applications have focused on Galactic supernova remnants, the software is modular, making it straightforward to customize for different applications. In particular, the shapes of the particle distribution functions and the shape of the seed photon spectrum used by the inverse Compton model are defined in separate modules and may be customized for specific applications. We assess the accuracy of these models by using a recurrence relation and by comparing them with analytic results and with previous numerical work by other authors.Comment: 14 pages, 7 figures, Accepted for publication in ApJ Supplemen

    Combined carriership of TLR9-1237C and CD14-260T alleles enhances the risk of developing chronic relapsing pouchitis

    Get PDF
    AIM: To investigate the single nucleotide polymorphisms (SNPs) in genes involved in bacterial recognition and the susceptibility to pouchitis or pouchitis severity. METHODS: Analyses of CD14 -260C>T, CARD15/NOD2 3020insC, Toll-like receptor (TLR)4 +896A>G, TLR9 -1237T>C, TLR9+2848G>A, and IRAKM + 22148G>A SNPs were performed in 157 ileal-pouch anal anastomosis (IPAA) patients (79 patients who did not develop pouchitis, 43 infrequent pouchitis patients, 35 chronic relapsing pouchitis patients) and 224 Italian Caucasian healthy controls. RESULTS: No significant differences were found in SNP frequencies between controls and IPAA patients. However, a significant difference in carriership frequency of the TLR9-1237C allele was found between the infrequent pouchitis and chronic relapsing pouchitis groups [P = 0.028, oddos ratio (OR) = 3.2, 95%CI = 1.2-8.6]. This allele uniquely represented a 4-locus TLR9 haplotype comprising both studied TLR9 SNPs in Caucasians. Carrier trait analysis revealed an enhanced combined carriership of the alleles TLR9 -1237C and CD14 -260T in the chronic relapsing pouchitis and infrequent pouchitis group (P = 0.018, OR = 4.1, 95%CI = 1.4 -12.3). CONCLUSION: There is no evidence that the SNPs predispose to the need for IPAA surgery. The significant increase of the combined carriership of the CD14 -260T and TLR9 -1237C alleles in the chronic relapsing pouchitis group suggests that these markers identify a subgroup of IPAA patients with a risk of developing chronic or refractory pouchitis

    Effective detection of human leukocyte antigen risk alleles in celiac disease using tag single nucleotide polymorphisms.

    Get PDF
    Background: The HLA genes, located in the MHC region on chromosome 6p21.3, play an important role in many autoimmune disorders, such as celiac disease (CD), type 1 diabetes (T1D), rheumatoid arthritis, multiple sclerosis, psoriasis and others. Known HLA variants that confer risk to CD, for example, include DQA1*05/DQB1*02 (DQ2.5) and DQA1*03/ DQB1*0302 (DQ8). To diagnose the majority of CD patients and to study disease susceptibility and progression, typing these strongly associated HLA risk factors is of utmost importance. However, current genotyping methods for HLA risk factors involve many reactions, and are complicated and expensive. We sought a simple experimental approach using tagging SNPs that predict the CD-associated HLA risk factors. Methodology: Our tagging approach exploits linkage disequilibrium between single nucleotide polymorphism (SNPs) and the CD-associated HLA risk factors DQ2.5 and DQ8 that indicate direct risk, and DQA1*0201/DQB1*0202 (DQ2.2) and DQA1*0505/DQB1*0301 (DQ7) that attribute to the risk of DQ2.5 to CD. To evaluate the predictive power of this approach, we performed an empirical comparison of the predicted DQ types, based on these six tag SNPs, with those executed with current validated laboratory typing methods of the HLA-DQA1 and -DQB1 genes in three large cohorts. The results were validated in three European celiac populations. Conclusion: Using this method, only six SNPs were needed to predict the risk types carried by .95% of CD patients. We determined that for this tagging approach the sensitivity was .0.991, specificity .0.996 and the predictive value .0.948. Our results show that this tag SNP method is very accurate an

    Multiwavelength observations of Mkn 501 during the 1997 high state

    Full text link
    During the observation period 1997, the nearby Blazar Mkn 501 showed extremely strong emission and high variability. We examine multiwavelength aspects of this event using radio, optical, soft and hard X-ray and TeV data. We concentrate on the medium-timescale variability of the broadband spectra, averaged over weekly intervals. We confirm the previously found correlation between soft and hard X-ray emission and the emission at TeV energies, while the source shows only minor variability at radio and optical wavelengths. The non-linear correlation between hard X-ray and TeV fluxes is consistent with a simple analytic estimate based on an SSC model in which Klein-Nishina effects are important for the highest-energy electrons in the jet, and flux variations are caused by variations of the electron density and/or the spectral index of the electron injection spectrum. The time-averaged spectra are fitted with a Synchrotron Self-Compton (SSC) dominated leptonic jet model, using the full Klein-Nishina cross section and following the self-consistent evolution of relativistic particles along the jet, accounting for gamma-gamma absorption and pair production within the source as well as due to the intergalactic infrared background radiation. The contribution from external inverse-Compton scattering is tightly constrained by the low maximum EGRET flux and found to be negligible at TeV energies. We find that high levels of the X-ray and TeV fluxes can be explained by a hardening of the energy spectra of electrons injected at the base of the jet, in remarkable contrast to the trend found for gamma-ray flares of the flat-spectrum radio quasar PKS 0528+134.Comment: accepted for publication in ApJ, 31 pages, 11 figure
    corecore