53 research outputs found

    The role of preclinical SPECT in oncological and neurological research in combination with either CT or MRI

    Get PDF

    The role of the posterior cerebellum in dysfunctional social sequencing

    No full text
    Recent advances in social neuroscience have highlighted the critical role of the cerebellum in social cognition, and especially the posterior cerebellum. Studies have supported the view that the posterior cerebellum builds internal action models of our social interactions to predict how other people’s actions will be executed, what our most likely responses are to these actions. This mechanism allows to better anticipate action sequences during social interactions in an automatic and intuitive way and to fine-tune these anticipations, making it easier to understand other’s social behaviors and mental states (e.g., beliefs, intentions, traits). In this paper, we argue that the central role of the posterior cerebellum in identifying and automatizing social action sequencing provides a fruitful starting point for investigating social dysfunctions in a variety of clinical pathologies, such as autism, obsessive-compulsive disorder, depression, and addiction. Our key hypothesis is that dysfunctions of the posterior cerebellum lead to under- or overuse of inflexible social routines and lack of plasticity for learning new, more adaptive, social automatisms. We briefly review past research supporting this view and propose a program of research to test our hypothesis. This approach might alleviate a variety of mental problems of individuals who suffer from inflexible automatizations that stand in the way of adjustable and intuitive social behavior, by increasing posterior cerebellar plasticity using noninvasive neurostimulation or neuro-guided training programs

    Varenicline increases in vivo striatal dopamine D-2/3 receptor binding: an ultra-high-resolution pinhole [I-123]IBZM SPECT study in rats

    No full text
    Introduction: Ex vivo storage phosphor imaging rat studies reported increased brain dopamine D-2/3 receptor (DRD2/3) availability following treatment with varenicline, a nicotinergic drug. However, ex vivo studies can only be performed using cross-sectional designs. Small-animal imaging offers the opportunity to perform serial assessments. We evaluated whether high-resolution pinhole single photon emission computed tomography (SPECT) imaging in rats was able to reproduce previous ex vivo findings. Methods: Rats were imaged for baseline striatal DRD2/3 availability using ultra-high-resolution pinhole SPECT (U-SPECT-II) and [I-123] IBZM as a radiotracer, and randomized to varenicline (n=7; 2 mg/kg) or saline (n=7). Following 2 weeks of treatment, a second scan was acquired. Results: Significantly increased striatal DRD2/3 availability was found following varenicline treatment compared to saline (time*treatment effect): posttreatment difference in binding potential between groups corrected for initial baseline differences was 2.039 (P=.022), indicating a large effect size (d=1.48). Conclusions: Ultra-high-resolution pinhole SPECT can be used to assess varenicline-induced changes in DRD2/3 availability in small laboratory animals over time. Future small-animal studies should include imaging techniques to enable repeated within-subjects measurements and reduce the amount of animals. (C) 2012 Elsevier Inc. All rights reserve
    • …
    corecore