836 research outputs found
Preasymptotic multiscaling in the phase-ordering dynamics of the kinetic Ising model
The evolution of the structure factor is studied during the phase-ordering
dynamics of the kinetic Ising model with conserved order parameter. A
preasymptotic multiscaling regime is found as in the solution of the
Cahn-Hilliard-Cook equation, revealing that the late stage of phase-ordering is
always approached through a crossover from multiscaling to standard scaling,
independently from the nature of the microscopic dynamics.Comment: 11 pages, 3 figures, to be published in Europhys. Let
A fast algorithm for backbones
A matching algorithm for the identification of backbones in percolation
problems is introduced. Using this procedure, percolation backbones are studied
in two- to five-dimensional systems containing 1.7x10^7 sites, two orders of
magnitude larger than was previously possible using burning algorithms.Comment: 8 pages, 6 .eps figures. Uses epsfig and ijmpc.sty (included). To
appear in Int. J. Mod. Phys.
Glass transition in granular media
In the framework of schematic hard spheres lattice models for granular media
we investigate the phenomenon of the ``jamming transition''. In particular,
using Edwards' approach, by analytical calculations at a mean field level, we
derive the system phase diagram and show that ``jamming'' corresponds to a
phase transition from a ``fluid'' to a ``glassy'' phase, observed when
crystallization is avoided. Interestingly, the nature of such a ``glassy''
phase turns out to be the same found in mean field models for glass formers.Comment: 7 pages, 4 figure
Site Percolation and Phase Transitions in Two Dimensions
The properties of the pure-site clusters of spin models, i.e. the clusters
which are obtained by joining nearest-neighbour spins of the same sign, are
here investigated. In the Ising model in two dimensions it is known that such
clusters undergo a percolation transition exactly at the critical point. We
show that this result is valid for a wide class of bidimensional systems
undergoing a continuous magnetization transition. We provide numerical evidence
for discrete as well as for continuous spin models, including SU(N) lattice
gauge theories. The critical percolation exponents do not coincide with the
ones of the thermal transition, but they are the same for models belonging to
the same universality class.Comment: 8 pages, 6 figures, 2 tables. Numerical part developed; figures,
references and comments adde
Relaxation properties in a lattice gas model with asymmetrical particles
We study the relaxation process in a two-dimensional lattice gas model, where
the interactions come from the excluded volume. In this model particles have
three arms with an asymmetrical shape, which results in geometrical frustration
that inhibits full packing. A dynamical crossover is found at the arm
percolation of the particles, from a dynamical behavior characterized by a
single step relaxation above the transition, to a two-step decay below it.
Relaxation functions of the self-part of density fluctuations are well fitted
by a stretched exponential form, with a exponent decreasing when the
temperature is lowered until the percolation transition is reached, and
constant below it. The structural arrest of the model seems to happen only at
the maximum density of the model, where both the inverse diffusivity and the
relaxation time of density fluctuations diverge with a power law. The dynamical
non linear susceptibility, defined as the fluctuations of the self-overlap
autocorrelation, exhibits a peak at some characteristic time, which seems to
diverge at the maximum density as well.Comment: 7 pages and 9 figure
A graph-theoretic account of logics
A graph-theoretic account of logics is explored based on the general
notion of m-graph (that is, a graph where each edge can have a finite
sequence of nodes as source). Signatures, interpretation structures and
deduction systems are seen as m-graphs. After defining a category freely
generated by a m-graph, formulas and expressions in general can be seen
as morphisms. Moreover, derivations involving rule instantiation are also
morphisms. Soundness and completeness theorems are proved. As a consequence of the generality of the approach our results apply to very different
logics encompassing, among others, substructural logics as well as logics
with nondeterministic semantics, and subsume all logics endowed with an
algebraic semantics
Critical Droplets and Phase Transitions in Two Dimensions
In two space dimensions, the percolation point of the pure-site clusters of
the Ising model coincides with the critical point T_c of the thermal transition
and the percolation exponents belong to a special universality class. By
introducing a bond probability p_B<1, the corresponding site-bond clusters keep
on percolating at T_c and the exponents do not change, until
p_B=p_CK=1-exp(-2J/kT): for this special expression of the bond weight the
critical percolation exponents switch to the 2D Ising universality class. We
show here that the result is valid for a wide class of bidimensional models
with a continuous magnetization transition: there is a critical bond
probability p_c such that, for any p_B>=p_c, the onset of percolation of the
site-bond clusters coincides with the critical point of the thermal transition.
The percolation exponents are the same for p_c<p_B<=1 but, for p_B=p_c, they
suddenly change to the thermal exponents, so that the corresponding clusters
are critical droplets of the phase transition. Our result is based on Monte
Carlo simulations of various systems near criticality.Comment: Final version for publication, minor changes, figures adde
- …