836 research outputs found

    Preasymptotic multiscaling in the phase-ordering dynamics of the kinetic Ising model

    Full text link
    The evolution of the structure factor is studied during the phase-ordering dynamics of the kinetic Ising model with conserved order parameter. A preasymptotic multiscaling regime is found as in the solution of the Cahn-Hilliard-Cook equation, revealing that the late stage of phase-ordering is always approached through a crossover from multiscaling to standard scaling, independently from the nature of the microscopic dynamics.Comment: 11 pages, 3 figures, to be published in Europhys. Let

    A fast algorithm for backbones

    Full text link
    A matching algorithm for the identification of backbones in percolation problems is introduced. Using this procedure, percolation backbones are studied in two- to five-dimensional systems containing 1.7x10^7 sites, two orders of magnitude larger than was previously possible using burning algorithms.Comment: 8 pages, 6 .eps figures. Uses epsfig and ijmpc.sty (included). To appear in Int. J. Mod. Phys.

    Glass transition in granular media

    Full text link
    In the framework of schematic hard spheres lattice models for granular media we investigate the phenomenon of the ``jamming transition''. In particular, using Edwards' approach, by analytical calculations at a mean field level, we derive the system phase diagram and show that ``jamming'' corresponds to a phase transition from a ``fluid'' to a ``glassy'' phase, observed when crystallization is avoided. Interestingly, the nature of such a ``glassy'' phase turns out to be the same found in mean field models for glass formers.Comment: 7 pages, 4 figure

    Site Percolation and Phase Transitions in Two Dimensions

    Full text link
    The properties of the pure-site clusters of spin models, i.e. the clusters which are obtained by joining nearest-neighbour spins of the same sign, are here investigated. In the Ising model in two dimensions it is known that such clusters undergo a percolation transition exactly at the critical point. We show that this result is valid for a wide class of bidimensional systems undergoing a continuous magnetization transition. We provide numerical evidence for discrete as well as for continuous spin models, including SU(N) lattice gauge theories. The critical percolation exponents do not coincide with the ones of the thermal transition, but they are the same for models belonging to the same universality class.Comment: 8 pages, 6 figures, 2 tables. Numerical part developed; figures, references and comments adde

    Relaxation properties in a lattice gas model with asymmetrical particles

    Full text link
    We study the relaxation process in a two-dimensional lattice gas model, where the interactions come from the excluded volume. In this model particles have three arms with an asymmetrical shape, which results in geometrical frustration that inhibits full packing. A dynamical crossover is found at the arm percolation of the particles, from a dynamical behavior characterized by a single step relaxation above the transition, to a two-step decay below it. Relaxation functions of the self-part of density fluctuations are well fitted by a stretched exponential form, with a β\beta exponent decreasing when the temperature is lowered until the percolation transition is reached, and constant below it. The structural arrest of the model seems to happen only at the maximum density of the model, where both the inverse diffusivity and the relaxation time of density fluctuations diverge with a power law. The dynamical non linear susceptibility, defined as the fluctuations of the self-overlap autocorrelation, exhibits a peak at some characteristic time, which seems to diverge at the maximum density as well.Comment: 7 pages and 9 figure

    A graph-theoretic account of logics

    Get PDF
    A graph-theoretic account of logics is explored based on the general notion of m-graph (that is, a graph where each edge can have a finite sequence of nodes as source). Signatures, interpretation structures and deduction systems are seen as m-graphs. After defining a category freely generated by a m-graph, formulas and expressions in general can be seen as morphisms. Moreover, derivations involving rule instantiation are also morphisms. Soundness and completeness theorems are proved. As a consequence of the generality of the approach our results apply to very different logics encompassing, among others, substructural logics as well as logics with nondeterministic semantics, and subsume all logics endowed with an algebraic semantics

    Critical Droplets and Phase Transitions in Two Dimensions

    Full text link
    In two space dimensions, the percolation point of the pure-site clusters of the Ising model coincides with the critical point T_c of the thermal transition and the percolation exponents belong to a special universality class. By introducing a bond probability p_B<1, the corresponding site-bond clusters keep on percolating at T_c and the exponents do not change, until p_B=p_CK=1-exp(-2J/kT): for this special expression of the bond weight the critical percolation exponents switch to the 2D Ising universality class. We show here that the result is valid for a wide class of bidimensional models with a continuous magnetization transition: there is a critical bond probability p_c such that, for any p_B>=p_c, the onset of percolation of the site-bond clusters coincides with the critical point of the thermal transition. The percolation exponents are the same for p_c<p_B<=1 but, for p_B=p_c, they suddenly change to the thermal exponents, so that the corresponding clusters are critical droplets of the phase transition. Our result is based on Monte Carlo simulations of various systems near criticality.Comment: Final version for publication, minor changes, figures adde
    • …
    corecore