22 research outputs found

    Hereditary renal adysplasia, pulmonary hypoplasia and Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hereditary renal adysplasia is an autosomal dominant trait with incomplete penetrance and variable expression that is usually associated with malformative combinations (including Müllerian anomalies) affecting different mesodermal organs such as the heart, lung, and urogenital system.</p> <p>Case report</p> <p>A case showing pulmonary hypoplasia, hip dysplasia, hereditary renal adysplasia, and Mayer-Rokitansky-Kuster-Hauser syndrome in adulthood is reported here. The i.v. pyelography showed right renal agenesis with a normal left kidney and ureter. Ultrasound and Magnetic Resonance Imaging also showed right renal agenesis with multicystic embryonary remnants in the right hemipelvis probably corresponding to a dysgenetic kidney. An uretrocystoscopy showed absence of ectopic ureter and of the right hemitrigone. She was scheduled for a diagnostic laparoscopy and creation of a neovagina according to the McIndoe technique with a prosthesis and skin graft. Laparoscopy confirmed the absence of the uterus. On both sides, an elongated, solid, rudimentary uterine horn could be observed. Both ovaries were also elongated, located high in both abdominal flanks and somewhat dysgenetics. A conventional cytogenetic study revealed a normal female karyotype 46, XX at a level of 550 GTG bands. A CGH analysis was performed using a 244K oligoarray CGH detecting 11 copy number variants described as normal variants in the databases. The 17q12 and 22q11.21 microdeletions described in other MRKH patients were not present in this case. Four years after operation her evolution is normal, without symptoms and the neovagina is adequately functional. The geneticists have studied her family history and the pedigree of the family is shown.</p> <p>Conclusions</p> <p>We suggest that primary damage to the mesoderm (paraaxil, intermediate, and lateral) caused by mutations in a yet unidentified gene is responsible for: 1) skeletal dysplasia, 2) inappropriate interactions between the bronchial mesoderm and endodermal lung bud as well as between the blastema metanephric and ureteric bud, and eventually 3) Müllerian anomalies (peritoneal mesothelium) at the same level. These anomalies would be transmitted as an autosomal dominant trait with incomplete penetrance and variable expressivity.</p

    BAC array CGH in patients with Velocardiofacial syndrome-like features reveals genomic aberrations on chromosome region 1q21.1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microdeletion of the chromosome 22q11.2 region is the most common genetic aberration among patients with velocardiofacial syndrome (VCFS) but a subset of subjects do not show alterations of this chromosome region.</p> <p>Methods</p> <p>We analyzed 18 patients with VCFS-like features by comparative genomic hybridisation (aCGH) array and performed a face-to-face slide hybridization with two different arrays: a whole genome and a chromosome 22-specific BAC array. Putative rearrangements were confirmed by FISH and MLPA assays.</p> <p>Results</p> <p>One patient carried a combination of rearrangements on 1q21.1, consisting in a microduplication of 212 kb and a close microdeletion of 1.15 Mb, previously reported in patients with variable phenotypes, including mental retardation, congenital heart defects (CHD) and schizophrenia. While 326 control samples were negative for both 1q21.1 rearrangements, one of 73 patients carried the same 212-kb microduplication, reciprocal to TAR microdeletion syndrome. Also, we detected four copy number variants (CNVs) inherited from one parent (a 744-kb duplication on 10q11.22; a 160 kb duplication and deletion on 22q11.21 in two cases; and a gain of 140 kb on 22q13.2), not present in control subjects, raising the potential role of these CNVs in the VCFS-like phenotype.</p> <p>Conclusions</p> <p>Our results confirmed aCGH as a successful strategy in order to characterize additional submicroscopic aberrations in patients with VCF-like features that fail to show alterations in 22q11.2 region. We report a 212-kb microduplication on 1q21.1, detected in two patients, which may contribute to CHD.</p

    Genomic imbalances associated with mullerian aplasia

    No full text
    Background: Aplasia of the mullerian ducts leads to absence of the uterine corpus, uterine cervix, and upper (superior) vagina. Patients with mullerian aplasia (MA) often exhibit additional clinical features such as renal, vertebral and cardiac defects. A number of different syndromes have been associated with MA, and in most cases its aetiology remains poorly understood. Objective and methods: 14 syndromic patients with MA and 46, XX G-banded karyotype were screened for DNA copy number changes by similar to 1 Mb whole genome bacterial artificial chromosome (BAC) array based comparative genomic hybridisation (CGH). The detected alterations were validated by an independent method and further mapped by high resolution oligo-arrays. Results: Submicroscopic genomic imbalances affecting the 1q21.1, 17q12, 22q11.21, and Xq21.31 chromosome regions were detected in four probands. Presence of the alterations in the normal mother of one patient suggests incomplete penetrance and/or variable expressivity. Conclusion: 4 of the 14 patients (29%) were found to have cryptic genomic alterations. The imbalances on 22q11.21 support recent findings by us and others that alterations in this chromosome region may result in impairment of mullerian duct development. The remaining imbalances indicate involvement of previously unknown chromosome regions in MA, and point specifically to LHX1 and KLHL4 as candidate genes

    Whole-genome array-CGH screening in undiagnosed syndromic patients: old syndromes revisited and new alterations

    No full text
    We report array-CGH screening of 95 syndromic patients with normal G-banded karyotypes and at least one of the following features: mental retardation, heart defects, deafness, obesity, craniofacial dysmorphisms or urogenital tract malformations. Chromosome imbalances not previously detected in normal controls were found in 30 patients (31%) and at least 16 of them (17%) seem to be causally related to the abnormal phenotypes. Eight of the causative imbalances had not been described previously and pointed to new chromosome regions and candidate genes for specific phenotypes, including a connective tissue disease locus on 2p16.3, another for obesity on 7q22.1 -> q22.3, and a candidate gene for the 3q29 deletion syndrome manifestations. the other causative alterations had already been associated with well-defined phenotypes including Sotos syndrome, and the 1p36 and 22q11.21 microdeletion syndromes. However, the clinical features of these latter patients were either not typical or specific enough to allow diagnosis before detection of chromosome imbalances. for instance, three patients with overlapping deletions in 22q11.21 were ascertained through entirely different clinical features, i.e., heart defect, utero-vaginal aplasia, and mental retardation associated with psychotic disease. Our results demonstrate that ascertainment through whole-genome screening of syndromic patients by array-CGH leads not only to the description of new syndromes, but also to the recognition of a broader spectrum of features for already described syndromes. Furthermore, on the technical side, we have significantly reduced the amount of reagents used and costs involved in the array-CGH protocol, without evident reduction in efficiency, bringing the method more within reach of centers with limited budgets. Copyright (c) 2006 S. Karger AG, Basel.Univ São Paulo, Inst Biociencias, Dept Genet & Biol Evolut, BR-05422970 São Paulo, BrazilLeiden Univ, Med Ctr, Dept Mol Cell Biol, Leiden, NetherlandsHosp Clin São Paulo, Dept Neurol, São Paulo, BrazilUniv São Paulo, Inst Crianca, Dept Pediat, Genet Unit, São Paulo, BrazilRobinow Syndrome Fdn, Anoka, MN USAWeb of Scienc
    corecore