89 research outputs found

    Innovations to Improve Lung Isolation Training for Thoracic Anesthesia: A Narrative Review.

    Get PDF
    A double-lumen tube or bronchial blocker positioning using flexible bronchoscopy for lung isolation and one-lung ventilation requires specific technical competencies. Training to acquire and retain such skills remains a challenge in thoracic anesthesia. Recent technological and innovative developments in the field of simulation have opened up exciting new horizons and possibilities. In this narrative review, we examine the latest development of existing training modalities while investigating, in particular, the use of emergent techniques such as virtual reality bronchoscopy simulation, virtual airway endoscopy, or the preoperative 3D printing of airways. The goal of this article is, therefore, to summarize the role of existing and future applications of training models/simulators and virtual reality simulators for training flexible bronchoscopy and lung isolation for thoracic anesthesia

    Socio-economic and Technical Characteristics of Backyard Animal Husbandry in Two Rural Communities of Yucatan, Mexico

    Get PDF
    This research work was conducted in order to asses the socio-economic and technical aspects of backyard animal rearing in two communities of Yucatán, México. One hundred and thirty nine families were interviewed in Sudzal (C1) and 117 families in San Jose Tzal (C2). A structured questionnaire was used to interview the families on technical and socio-economic aspects. Using this information the technical level of animal husbandry and a index of socio-economic status of the families involved in backyard animal rearing in both communities were determined. In C1 46.8% of the interviewed families reared animals in their backyard in comparison to 70.9% in C2. Main animal species kept in the backyard were chickens (C1= 92.3% and C2= 88.0), turkeys (C1= 63.1% and C2= 55.4%) and pigs (C1= 38.5% and 1C2= 5. 7% in C1 and C2 respectively). In C2 100% of pigs kept in the backyard were of the commercial type. Technical level in animal production was significantly higher (P 0.0001) in C2 than in C1, because utilisation of commercial diets was higher in C2 (P 0.001) than in C1. The families of C2 had a higher socio-economic level (P 0.002) than families from C1, because families of C2 have houses built with lasting materials (P 0.0001) and the occupation of the head of the family was associated with higher income (merchants or employees) (P 0.0001). The correlation coefficients between socio-economic status and technical level in backyard animal production showed that 84% of the technical level was explained by the socio-economic status. It can be concluded that socio-economic status has a high influence on backyard animal production characteristics. The socio-economic status determine the number of animals kept and the technical level in animal rearing

    Functional divergence in the role of N-linked glycosylation in smoothened signaling

    Get PDF
    The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice

    Expression and Characterization of Drosophila Signal Peptide Peptidase-Like (sppL), a Gene That Encodes an Intramembrane Protease

    Get PDF
    Intramembrane proteases of the Signal Peptide Peptidase (SPP) family play important roles in developmental, metabolic and signaling pathways. Although vertebrates have one SPP and four SPP-like (SPPL) genes, we found that insect genomes encode one Spp and one SppL. Characterization of the Drosophila sppL gene revealed that the predicted SppL protein is a highly conserved structural homolog of the vertebrate SPPL3 proteases, with a predicted nine-transmembrane topology, an active site containing aspartyl residues within a transmembrane region, and a carboxy-terminal PAL domain. SppL protein localized to both the Golgi and ER. Whereas spp is an essential gene that is required during early larval stages and whereas spp loss-of-function reduced the unfolded protein response (UPR), sppL loss of function had no apparent phenotype. This was unexpected given that genetic knockdown phenotypes in other organisms suggested significant roles for Spp-related proteases

    pppK+Λpp \to pK^{+}\Lambda reaction in an effective Lagrangian model

    Full text link
    We investigate the pppK+Λpp \to pK^{+}\Lambda reaction within an effective Lagrangian model where the contributions to the amplitudes are taken into account within the tree level. The initial interaction between the two nucleons is modeled by the exchange of π\pi, ρ\rho, ω\omega and σ\sigma mesons and the ΛK+\Lambda K^{+} production proceeds via the excitation of the NN^*(1650), NN^*(1710), NN^*(1720) baryonic resonances. The parameters of the model at the nucleon-nucleon-meson vertices are determined by fitting the elastic nucleon-nucleon scattering with an effective interaction based on the exchange of these four mesons, while those at the resonance vertices are calculated from the known decay widths of the resonances as well as the vector meson dominance model. Available experimental data is described well by this approach. The one-pion-exchange diagram dominates the production process at both higher and lower beam energies. The ρ\rho and ω\omega meson exchanges make negligible contributions. However, the σ\sigma-exchange processes contribute substantially to the total cross sections at lower beam energies. The excitation of the NN^*(1710) and NN^*(1650) resonances dominate this reaction at beam momenta above and below 3 GeV/c respectively. The interference among the amplitudes of various resonance excitation processes is significant. For beam energies very close to the K+K^{+} production threshold the hyperon-proton final state interaction effects are quite important. The data is selective about the model used to describe the low energy scattering of the two final state baryons.Comment: Revised version, to appear in Phys. Rev.

    Trafficking through COPII Stabilises Cell Polarity and Drives Secretion during Drosophila Epidermal Differentiation

    Get PDF
    BACKGROUND: The differentiation of an extracellular matrix (ECM) at the apical side of epithelial cells implies massive polarised secretion and membrane trafficking. An epithelial cell is hence engaged in coordinating secretion and cell polarity for a correct and efficient ECM formation. PRINCIPAL FINDINGS: We are studying the molecular mechanisms that Drosophila tracheal and epidermal cells deploy to form their specific apical ECM during differentiation. In this work we demonstrate that the two genetically identified factors haunted and ghost are essential for polarity maintenance, membrane topology as well as for secretion of the tracheal luminal matrix and the cuticle. We show that they code for the Drosophila COPII vesicle-coating components Sec23 and Sec24, respectively, that organise vesicle transport from the ER to the Golgi apparatus. CONCLUSION: Taken together, epithelial differentiation during Drosophila embryogenesis is a concerted action of ECM formation, plasma membrane remodelling and maintenance of cell polarity that all three rely mainly, if not absolutely, on the canonical secretory pathway from the ER over the Golgi apparatus to the plasma membrane. Our results indicate that COPII vesicles constitute a central hub for these processes

    A Concerted Action of Engrailed and Gooseberry-Neuro in Neuroblast 6-4 Is Triggering the Formation of Embryonic Posterior Commissure Bundles

    Get PDF
    One challenging question in neurogenesis concerns the identification of cues that trigger axonal growth and pathfinding to form stereotypic neuronal networks during the construction of a nervous system. Here, we show that in Drosophila, Engrailed (EN) and Gooseberry-Neuro (GsbN) act together as cofactors to build the posterior commissures (PCs), which shapes the ventral nerve cord. Indeed, we show that these two proteins are acting together in axon growth and midline crossing, and that this concerted action occurs at early development, in neuroblasts. More precisely, we identified that their expressions in NB 6-4 are necessary and sufficient to trigger the formation of the PCs, demonstrating that segmentation genes such as EN and GsbN play a crucial role in the determination of NB 6-4 in a way that will later influence growth and guidance of all the axons that form the PCs. We also demonstrate a more specific function of GsbN in differentiated neurons, leading to fasciculations between axons, which might be required to obtain PC mature axon bundles

    The Functions of Grainy Head-Like Proteins in Animals and Fungi and the Evolution of Apical Extracellular Barriers

    Get PDF
    The Grainy head (GRH) family of transcription factors are crucial for the development and repair of epidermal barriers in all animals in which they have been studied. This is a high-level functional conservation, as the known structural and enzymatic genes regulated by GRH proteins differ between species depending on the type of epidermal barrier being formed. Interestingly, members of the CP2 superfamily of transcription factors, which encompasses the GRH and LSF families in animals, are also found in fungi – organisms that lack epidermal tissues. To shed light on CP2 protein function in fungi, we characterized a Neurospora crassa mutant lacking the CP2 member we refer to as grainy head-like (grhl). We show that Neurospora GRHL has a DNA-binding specificity similar to that of animal GRH proteins and dissimilar to that of animal LSF proteins. Neurospora grhl mutants are defective in conidial-spore dispersal due to an inability to remodel the cell wall, and we show that grhl mutants and the long-known conidial separation-2 (csp-2) mutants are allelic. We then characterized the transcriptomes of both Neurospora grhl mutants and Drosophila grh mutant embryos to look for similarities in the affected genes. Neurospora grhl appears to play a role in the development and remodeling of the cell wall, as well as in the activation of genes involved in defense and virulence. Drosophila GRH is required to activate the expression of many genes involved in cuticular/epidermal-barrier formation. We also present evidence that GRH plays a role in adult antimicrobial defense. These results, along with previous studies of animal GRH proteins, suggest the fascinating possibility that the apical extracellular barriers of some animals and fungi might share an evolutionary connection, and that the formation of physical barriers in the last common ancestor was under the control of a transcriptional code that included GRH-like proteins
    corecore