2,439 research outputs found
Magnetic field structure of the extended 3C 380 jet
An earlier study of the complex jet of 3C 380 by Papageorgiou et al. revealed total intensity and polarization structure associated with a bright knot K1 about 0.7 arcsec from the core that was reminiscent of that expected for a conical shock wave. In this new study, 1.42, 1.66 and 4.99 GHz total intensity, polarization and Faraday rotation images are presented and analysed. These images were derived from observations with the Very Long Baseline Array plus one antenna of the Very Large Array, obtained in 2006 March. These new images confirm the overall magnetic field structure of the knot K1 indicated in the earlier observations. In addition, a clear Faraday rotation gradient has been detected across the jet, extending roughly from 10 to 30 mas (70–200 pc) along the jet from the core (a radial distance of approximately two beamwidths). The gradient spans roughly 3.5 beamwidths in the transverse direction, and the difference in the rotation measures on either side of the jet is 4–5σ, demonstrating that the detection of the gradient is firm. We interpret this transverse Faraday rotation gradient as reflecting systematic variation of the line-of-sight component of a helical or toroidal magnetic field (B) associated with the jet of 3C 380. These results provide evidence that the helical field arising due to the joint action of the rotation of the central black hole and its accretion disc and the jet outflow can survive to distances of hundreds of parsecs from the central engine
Recommended from our members
Rapid Design and Manufacture of Ultralight Cellular Materials
This paper details the design, manufacture and testing of regular metallic lattice structures
with unit cell sizes in the range 0.8mm to 5mm and truss elements of 100-500 µm in diameter [1].
The structures were manufactured using Selective Laser Melting (SLM) technology from 316L
stainless steel. Compression tests have shown yield loadings of over 3.5kN despite being only
18mm by 18mm by 10mm in height, the results are favourably comparable to current
commercially available metallic foams. Software has been developed that creates slice files
without the use of CAD software or STL files and is capable of producing lattices within a
volume defined by a STL file.Mechanical Engineerin
Mutual productivity spillovers between foreign and local firms in China
The existing literature treats advanced technology sourcing as the only cause of reverse productivity spillovers from local to foreign firms and implies that mutual spillovers between foreign and local firms can only happen in the developed world. This paper argues that the diffusion of indigenous technology and local knowledge helps the productivity enhancement of multinationals, so that there can be mutual spillovers even in a developing country. The results from a large-sample firm-level econometric analysis and a comparative case study of seven companies in Chinese manufacturing support this new argument, as mutual spillovers are identified between local Chinese firms and overseas Chinese or OECD-invested firms
High velocity impact resistance of fibre metal laminates
The high velocity impact resistance of fibre metal laminates (FMLs) based on combinations of three
different aluminium alloys (6161-O, 6061-T6, 7075-T6) and a glass fibre reinforced epoxy resin have
been investigated both experimentally and numerically. A series of perforation tests on multilayer
configurations, ranging from a simple 2/1 lay-up to a seven ply 4/3 laminate. High velocity impact was
conducted using a projectile gas-gun launcher, operating in the velocity range between 119 m/s and
252 m/s.[1] The impact response of fibre metal laminates samples was characterised by determining
the energy required to perforate the panels. A stereoscopic Digital Image Correlation (DIC) method
was adopted to measure full-field deformations and strain for FMLs which providing the full field
strain history and 3D measurements up to sample perforation. The perforation resistance of the panels
was predicted using the finite element analysis package Abaqus/Explicit. A vectorized user-defined
material subroutine (VUMAT) was employed to define Hashin’s 3D rate-dependant damage criteria
for the composite layers. The subroutine was implemented into the commercial finite element software
ABAQUS/Explicit to simulate the deformation and failure of FMLs. Agreement between the
predictions of the finite element models and the experimental data was good across the range of
configurations. Ballistic limit of those FMLs was obtained from both the experimental tests and
numerical approaches
Atrial conduction velocity mapping: clinical tools, algorithms and approaches for understanding the arrhythmogenic substrate
Characterizing patient-specific atrial conduction properties is important for understanding arrhythmia drivers, for predicting potential arrhythmia pathways, and for personalising treatment approaches. One metric that characterizes the health of the myocardial substrate is atrial conduction velocity, which describes the speed and direction of propagation of the electrical wavefront through the myocardium. Atrial conduction velocity mapping algorithms are under continuous development in research laboratories and in industry. In this review article, we give a broad overview of different categories of currently published methods for calculating CV, and give insight into their different advantages and disadvantages overall. We classify techniques into local, global, and inverse methods, and discuss these techniques with respect to their faithfulness to the biophysics, incorporation of uncertainty quantification, and their ability to take account of the atrial manifold
Characterisation of re-entrant circuit (or rotational activity) in vitro using the HL1-6 myocyte cell line
Fibrillation is the most common arrhythmia observed in clinical practice. Understanding of the mechanisms underlying its initiation and maintenance remains incomplete. Functional re-entries are potential drivers of the arrhythmia. Two main concepts are still debated, the “leading circle” and the “spiral wave or rotor” theories. The homogeneous subclone of the HL1 atrial-derived cardiomyocyte cell line, HL1-6, spontaneously exhibits re-entry on a microscopic scale due to its slow conduction velocity and the presence of triggers, making it possible to examine re-entry at the cellular level. We therefore investigated the re-entry cores in cell monolayers through the use of fluorescence optical mapping at high spatiotemporal resolution in order to obtain insights into the mechanisms of re-entry. Re-entries in HL1-6 myocytes required at least two triggers and a minimum colony area to initiate (3.5 to 6.4 mm2). After electrical activity was completely stopped and re-started by varying the extracellular K+ concentration, re-entries never returned to the same location while 35% of triggers re-appeared at the same position. A conduction delay algorithm also allows visualisation of the core of the re-entries. This work has revealed that the core of re-entries is conduction blocks constituted by lines and/or groups of cells rather than the round area assumed by the other concepts of functional re-entry. This highlights the importance of experimentation at the microscopic level in the study of re-entry mechanisms
Reducing complexity and unidentifiability when modelling human atrial cells
Mathematical models of a cellular action potential in cardiac modelling have become increasingly complex, particularly in gating kinetics which control the opening and closing of individual ion channel currents. As cardiac models advance towards use in personalised medicine to inform clinical decision-making, it is critical to understand the uncertainty hidden in parameter estimates from their calibration to experimental data. This study applies approximate Bayesian computation to re-calibrate the gating kinetics of four ion channels in two existing human atrial cell models to their original datasets, providing a measure of uncertainty and indication of potential issues with selecting a single unique value given the available experimental data. Two approaches are investigated to reduce the uncertainty present: re-calibrating the models to a more complete dataset and using a less complex formulation with fewer parameters to constrain. The re-calibrated models are inserted back into the full cell model to study the overall effect on the action potential. The use of more complete datasets does not eliminate uncertainty present in parameter estimates. The less complex model, particularly for the fast sodium current, gave a better fit to experimental data alongside lower parameter uncertainty and improved computational speed
- …