22,464 research outputs found
Experimental Observation of Coherence and Stochastic Resonances in an Electronic Chua Circuit
Stochastic and coherence resonances appear in nonlinear systems subjected to
an external source of noise and are characterized by a maximum response at the
optimal value of the noise intensity. This paper shows experimentally that it
is possible to observe them in a chaotic system. To this end we have analysed
an electronic Chua circuit running in the chaotic regime and added noise to its
dynamics. In the case of coherence resonance, we observe an optimal periodicity
for the jumps between chaotic attractors, whereas in the case of stochastic
resonance we observe a maximum in the signal-to-noise ratio at the frequency of
an external sinusoidal perturbation.Comment: 6 page
Galaxy Quenching from Cosmic Web Detachment
We propose the Cosmic Web Detachment (CWD) model, a framework to interpret
the star-formation history of galaxies in a cosmological context. The CWD model
unifies several starvation mechanisms known to disrupt or stop star formation
into one single physical framework. Galaxies begin accreting star-forming gas
at early times via a network of primordial filaments, simply related to the
pattern of density fluctuations in the initial conditions. But when
shell-crossing occurs on intergalactic scales, this pattern is disrupted, and
the galaxy detaches from its primordial filaments, ending the accretion of cold
gas. We argue that CWD encompasses known external processes halting star
formation, such as harassment, strangulation and starvation. On top of these
external processes, internal feedback processes such as AGN contribute to stop
in star formation as well.
By explicitly pointing out the non-linear nature of CWD events we introduce a
simple formalism to identify CWD events in N-body simulations. With it we
reproduce and explain, in the context of CWD, several observations including
downsizing, the cosmic star formation rate history, the galaxy mass-color
diagram and the dependence of the fraction of red galaxies with mass and local
density.Comment: 20 pages, accepted for publication in OJA. High-res version:
http://skysrv.pha.jhu.edu/~miguel/Papers/CWD/ms.pd
Mapping the structural diversity of C60 carbon clusters and their infrared spectra
The current debate about the nature of the carbonaceous material carrying the
infrared (IR) emission spectra of planetary and proto-planetary nebulae,
including the broad plateaus, calls for further studies on the interplay
between structure and spectroscopy of carbon-based compounds of astrophysical
interest. The recent observation of C60 buckminsterfullerene in space suggests
that carbon clusters of similar size may also be relevant. In the present work,
broad statistical samples of C60 isomers were computationally determined
without any bias using a reactive force field, their IR spectra being
subsequently obtained following local optimization with the
density-functional-based tight-binding theory. Structural analysis reveals four
main structural families identified as cages, planar polycyclic aromatics,
pretzels, and branched. Comparison with available astronomical spectra
indicates that only the cage family could contribute to the plateau observed in
the 6-9 micron region. The present framework shows great promise to explore and
relate structural and spectroscopic features in more diverse and possibly
hydrogenated carbonaceous compounds, in relation with astronomical
observations
Electrochemical Studies of Redox Systems for Energy Storage
Particular attention was paid to the Cr(II)/Cr(III) redox couple in aqueous solutions in the presence of Cl(-) ions. The aim of this research has been to unravel the electrode kinetics of this redox couple and the effect of Cl(1) and electrode substrate. Gold and silver were studied as electrodes and the results show distinctive differences; this is probably due to the role Cl(-) ion may play as a mediator in the reaction and the difference in state of electrical charge on these two metals (difference in the potential of zero charge, pzc). The competition of hydrogen evolution with CrCl3 reduction on these surfaces was studied by means of the rotating ring disk electrode (RRDE). The ring downstream measures the flux of chromous ions from the disk and therefore separation of both Cr(III) and H2 generation can be achieved by analyzing ring and disk currents. The conditions for the quantitative detection of Cr(2+) at the ring electrode were established. Underpotential deposition of Pb on Ag and its effect on the electrokinetics of Cr(II)/Cr(III) reaction was studied
Anticipating the response of excitable systems driven by random forcing
We study the regime of anticipated synchronization in unidirectionally
coupled model neurons subject to a common external aperiodic forcing that makes
their behavior unpredictable. We show numerically and by implementation in
analog hardware electronic circuits that, under appropriate coupling
conditions, the pulses fired by the slave neuron anticipate (i.e. predict) the
pulses fired by the master neuron. This anticipated synchronization occurs even
when the common external forcing is white noise.Comment: 12 pages (RevTex format
A deep insight into the sialome of male and female aedes aegypti mosquitoes
Only adult female mosquitoes feed on blood, while both genders take sugar meals. Accordingly, several compounds associated with blood feeding (i.e. vasodilators, anti-clotting, anti-platelets) are found only in female glands, while enzymes associated with sugar feeding or antimicrobials (such as lysozyme) are found in the glands of both sexes. We performed de novo assembly of reads from adult Aedes aegypti female and male salivary gland libraries (285 and 90 million reads, respectively). By mapping back the reads to the assembled contigs, plus mapping the reads from a publicly available Ae. aegypti library from adult whole bodies, we identified 360 transcripts (including splice variants and alleles) overexpressed tenfold or more in the glands when compared to whole bodies. Moreover, among these, 207 were overexpressed fivefold or more in female vs. male salivary glands, 85 were near equally expressed and 68 were overexpressed in male glands. We call in particular the attention to C-type lectins, angiopoietins, female-specific Antigen 5, the 9.7 kDa, 12â14 kDa, 23.5 kDa, 62/34 kDa, 4.2 kDa, proline-rich peptide, SG8, 8.7 kDa family and SGS fragments: these polypeptides are all of unknown function, but due to their overexpression in female salivary glands and putative secretory nature they are expected to affect host physiology. We have also found many transposons (some of which novel) and several endogenous viral transcripts (probably acquired by horizontal transfer) which are overexpressed in the salivary glands and may play some role in tissue-specific gene regulation or represent a mechanism of virus interference. This work contributes to a near definitive catalog of male and female salivary gland transcripts from Ae. aegypti, which will help to direct further studies aiming at the functional characterization of the many transcripts with unknown function and the understanding of their role in vector-host interaction and pathogen transmission
Stacked clusters of polycyclic aromatic hydrocarbon molecules
Clusters of polycyclic aromatic hydrocarbon (PAH) molecules are modelled
using explicit all-atom potentials using a rigid body approximation. The PAH's
considered range from pyrene (C10H8) to circumcoronene (C54H18), and clusters
containing between 2 and 32 molecules are investigated. In addition to the
usual repulsion-dispersion interactions, electrostatic point-charge
interactions are incorporated, as obtained from density functional theory
calculations. The general electrostatic distribution in neutral or singly
charged PAH's is reproduced well using a fluctuating charges analysis, which
provides an adequate description of the multipolar distribution. Global
optimization is performed using a variety of methods, including basin-hopping
and parallel tempering Monte Carlo. We find evidence that stacking the PAH
molecules generally yields the most stable motif. A structural transition
between one-dimensional stacks and three-dimensional shapes built from mutiple
stacks is observed at larger sizes, and the threshold for this transition
increases with the size of the monomer. Larger aggregates seem to evolve toward
the packing observed for benzene in bulk.Difficulties met in optimizing these
clusters are analysed in terms of the strong anisotropy of the molecules. We
also discuss segregation in heterogeneous clusters and vibrational properties
in the context of astrophysical observations.Comment: 12 pages, 7 figure
A halo bias function measured deeply into voids without stochasticity
We study the relationship between dark-matter haloes and matter in the MIP
-body simulation ensemble, which allows precision measurements of this
relationship, even deeply into voids. What enables this is a lack of
discreteness, stochasticity, and exclusion, achieved by averaging over hundreds
of possible sets of initial small-scale modes, while holding fixed large-scale
modes that give the cosmic web. We find (i) that dark-matter-halo formation is
greatly suppressed in voids; there is an exponential downturn at low densities
in the otherwise power-law matter-to-halo density bias function. Thus, the
rarity of haloes in voids is akin to the rarity of the largest clusters, and
their abundance is quite sensitive to cosmological parameters. The exponential
downturn appears both in an excursion-set model, and in a model in which
fluctuations evolve in voids as in an open universe with an effective
proportional to a large-scale density. We also find that (ii) haloes
typically populate the average halo-density field in a super-Poisson way, i.e.
with a variance exceeding the mean; and (iii) the rank-order-Gaussianized halo
and dark-matter fields are impressively similar in Fourier space. We compare
both their power spectra and cross-correlation, supporting the conclusion that
one is roughly a strictly-increasing mapping of the other. The MIP ensemble
especially reveals how halo abundance varies with `environmental' quantities
beyond the local matter density; (iv) we find a visual suggestion that at fixed
matter density, filaments are more populated by haloes than clusters.Comment: Changed to version accepted by MNRA
Dual branes in topological sigma models over Lie groups. BF-theory and non-factorizable Lie bialgebras
We complete the study of the Poisson-Sigma model over Poisson-Lie groups.
Firstly, we solve the models with targets and (the dual group of the
Poisson-Lie group ) corresponding to a triangular -matrix and show that
the model over is always equivalent to BF-theory. Then, given an
arbitrary -matrix, we address the problem of finding D-branes preserving the
duality between the models. We identify a broad class of dual branes which are
subgroups of and , but not necessarily Poisson-Lie subgroups. In
particular, they are not coisotropic submanifolds in the general case and what
is more, we show that by means of duality transformations one can go from
coisotropic to non-coisotropic branes. This fact makes clear that
non-coisotropic branes are natural boundary conditions for the Poisson-Sigma
model.Comment: 24 pages; JHEP style; Final versio
- âŠ