15 research outputs found

    Large scale diffuse light in the Coma cluster: a multi-scale approach

    Full text link
    We have obtained wide field images of the Coma cluster in the B, V, R and I bands with the CFH12K camera at CFHT. In order to search for large scale diffuse emission, we have applied to these images an iterative multi scale wavelet analysis and reconstruction technique which allowed to model all the sources (stars and galaxies) and subtract them from the original images. We found various concentrations of diffuse emission present in the central zone around the central galaxies NGC4874 and NGC4889. We characterize the positions, sizes and colors of these concentrations. Some sources do not seem to have strong star formation, while another one probably exhibits spiral-like color. One possible origin for the star forming diffuse emission sources is that in the region of the two main galaxies NGC4874 and NGC4889 spiral galaxies have recently been disrupted and star formation is still active in the dispersed material. We also use the characteristics of the sources of diffuse emission to trace the cluster dynamics. A scenario in which the group around NGC 4874 is moving north is consistent with our data.Comment: 11 pages, accepted in A&A, jpg figure

    Neutralino Annihilation at the Galactic Center Revisited

    Full text link
    The annihilation of neutralino dark matter in the Galactic Center (GC) may result in radio signals that can be used to detect or constrain the dark matter halo density profile or dark matter particle properties. At the Galactic Center, the accretion flow onto the central Black Hole (BH) sustains strong magnetic fields that can induce synchrotron emission by electrons and positrons generated in neutralino annihilations during advection onto the BH. Here we reanalyze the radiative processes relevant for the neutralino annihilation signal at the GC, with realistic assumptions about the accretion flow and its magnetic properties. We find that neglecting these effects, as done in previous papers, leads to the incorrent electron and photon spectra. We find that the magnetic fields associated with the flow are significantly stronger than previously estimated. We derive the appropriate equilibrium distribution of electrons and positron and the resulting radiation, considering adiabatic compression in the accretion flow, inverse Compton scattering off synchrotron photons (synchrotron self-Compton scattering), and synchrotron self-absorption of the emitted radiation. We derive the signal for a Navarro-Frenk-White (NFW) dark matter halo profile and a NFW profile with a dark matter spike due to the central BH. We find that the observed radio emission from the GC is inconsistent with the scenario in which a spiky distribution of neutralinos is present. We discuss several important differences between our calculations and those previously presented in the literature.Comment: 19 pages, 11 eps figures, version accepted for publication in JCA

    Diffuse light and building history of the galaxy cluster Abell 2667

    Get PDF
    We have searched for diffuse intracluster light in the galaxy cluster Abell 2667 (z=0.233) from HST images in three filters. We have applied to these images an iterative multi-scale wavelet analysis and reconstruction technique, which allows to subtract stars and galaxies from the original images. We detect a zone of diffuse emission south west of the cluster center (DS1), and a second faint object (ComDif), within DS1. Another diffuse source (DS2) may be detected, at lower confidence level, north east of the center. These sources of diffuse light contribute to 10-15% of the total visible light in the cluster. Whether they are independent entities or are part of the very elliptical external envelope of the central galaxy remains unclear. VLT VIMOS integral field spectroscopy reveals a faint continuum at the positions of DS1 and ComDif but do not allow to compute a redshift. A hierarchical substructure detection method reveals the presence of several galaxy pairs and groups defining a similar direction as the one drawn by the DS1-central galaxy-DS2 axis. The analysis of archive XMM-Newton and Chandra observations shows X-ray emission elongated in the same direction. The X-ray temperature map shows the presence of a cool core, a broad cool zone stretching from north to south and hotter regions towards the north east, south west and north west. This possibly suggests shock fronts along these directions produced by infalling material. These various data are consistent with a picture in which diffuse sources are concentrations of tidal debris and harassed matter expelled from infalling galaxies by tidal stripping and undergoing an accretion process onto the central cluster galaxy; as such, they are expected to be found along the main infall directions.Comment: Accepted for publication in Astronomy and Astrophysic

    Particle Dark Matter Constraints from the Draco Dwarf Galaxy

    Get PDF
    It is widely thought that neutralinos, the lightest supersymmetric particles, could comprise most of the dark matter. If so, then dark halos will emit radio and gamma ray signals initiated by neutralino annihilation. A particularly promising place to look for these indicators is at the center of the local group dwarf spheroidal galaxy Draco, and recent measurements of the motion of its stars have revealed it to be an even better target for dark matter detection than previously thought. We compute limits on WIMP properties for various models of Draco's dark matter halo. We find that if the halo is nearly isothermal, as the new measurements indicate, then current gamma ray flux limits prohibit much of the neutralino parameter space. If Draco has a moderate magnetic field, then current radio limits can rule out more of it. These results are appreciably stronger than other current constraints, and so acquiring more detailed data on Draco's density profile becomes one of the most promising avenues for identifying dark matter.Comment: 13 pages, 6 figure

    Diffuse inverse Compton and synchrotron emission from dark matter annihilations in galactic satellites

    Full text link
    Annihilating dark matter particles produce roughly as much power in electrons and positrons as in gamma ray photons. The charged particles lose essentially all of their energy to inverse Compton and synchrotron processes in the galactic environment. We discuss the diffuse signature of dark matter annihilations in satellites of the Milky Way (which may be optically dark with few or no stars), providing a tail of emission trailing the satellite in its orbit. Inverse Compton processes provide X-rays and gamma rays, and synchrotron emission at radio wavelengths might be seen. We discuss the possibility of detecting these signals with current and future observations, in particular EGRET and GLAST for the gamma rays.Comment: 13 pages, 5 figure

    Indirect search for dark matter: prospects for GLAST

    Full text link
    Possible indirect detection of neutralino, through its gamma-ray annihilation product, by the forthcoming GLAST satellite from our galactic halo, M31, M87 and the dwarf galaxies Draco and Sagittarius is studied. Gamma-ray fluxes are evaluated for the two representative energy thresholds, 0.1 GeV and 1.0 GeV, at which the spatial resolution of GLAST varies considerably. Apart from dwarfs which are described either by a modified Plummer profile or by a tidally-truncated King profiles, fluxes are compared for halos with central cusps and cores. It is demonstrated that substructures, irrespective of their profiles, enhance the gamma-ray emission only marginally. The expected gamma-ray intensity above 1 GeV at high galactic latitudes is consistent with the residual emission derived from EGRET data if the density profile has a central core and the neutralino mass is less than 50 GeV, whereas for a central cusp only a substantial enhancement would explain the observations. From M31, the flux can be detected above 0.1 GeV and 1.0 GeV by GLAST only if the neutralino mass is below 300 GeV and if the density profile has a central cusp, case in which a significant boost in the gamma-ray emission is produced by the central black hole. For Sagittarius, the flux above 0.1 GeV is detectable by GLAST provided the neutralino mass is below 50 GeV. From M87 and Draco the fluxes are always below the sensitivity limit of GLAST.Comment: 14 Pages, 7 Figures, 3 Tables, version to appear on Physical Review

    Neutralino Gamma-ray Signals from Accreting Halo Dark Matter

    Get PDF
    There is mounting evidence that a self-consistent model for particle cold dark matter has to take into consideration spatial inhomogeneities on sub-galactic scales seen, for instance, in high-resolution N-body simulations of structure formation. Also in more idealized, analytic models, there appear density enhancements in certain regions of the halo. We use the results from a recent N-body simulation of the Milky Way halo and investigate the gamma-ray flux which would be produced when a specific dark matter candidate, the neutralino, annihilates in regions of enhanced density. The clumpiness found on all scales in the simulation results in very strong gamma-ray signals which seem to already rule out some regions of the supersymmetric parameter space, and would be further probed by upcoming experiments, such as the GLAST gamma-ray satellite. As an orthogonal model of structure formation, we also consider Sikivie's simple infall model of dark matter which predicts that there should exist continuous regions of enhanced density, caustic rings, in the dark matter halo of the Milky Way. We find, however, that the gamma-ray signal from caustic rings is generally too small to be detectable.Comment: 15 pages, 11 figure

    Dark Matter Spikes and Annihilation Radiation from the Galactic Center

    Get PDF
    The annihilation rate of weakly interacting cold dark matter particles at the galactic center could be greatly enhanced by the growth of a density spike around the central supermassive black hole (SBH). Here we discuss the effects of hierarchical mergers on the central spike. Mergers between halos containing SBHs lead to the formation of SBH binaries which transfer energy to the dark matter particles, lowering their density. The predicted flux of annihiliation photons from the galactic center is several orders of magnitude smaller than in models that ignore the effects of SBHs and mergers. Measurement of the annihilation radiation could in principle be used to constrain the merger history of the galaxy.Comment: 4 pages, 3 postscript figures, uses revtex4.st
    corecore