239 research outputs found

    Peripheral neurological disturbances, autonomic dysfunction, and antineuronal antibodies in adult celiac disease before and after a gluten-free diet

    Get PDF
    Thirty-two consecutive adult celiac disease (CD) patients (pts), complaining of peripheral neuropathy (12 pts), autonomic dysfunction (17 pts), or both (3 pts), were evaluated to assess the presence of neurological damage (by clinical neurological evaluation and electrophysiological study) and antineuronal antibodies and to assess the effect of a gluten-free diet (GFD) on the course of the neurological symptoms and on antineuronal antibodies. At entry, 12 of 32 (38%) pts showed signs and symptoms of neurological damage: 7 of 12 (58%), peripheral neurological damage; 3 of 12 (25%), autonomic dysfunction; and 2 (17%), both peripheral neurological damage and autonomic dysfunction. The overall TNS score was 105 at entry. Anti-GM1 antibodies were present in 5 of 12 (42%) pts: 3 showed peripheral neurological damage and 2 showed both peripheral neurological damage and autonomic dysfunction. One year after the GFD was started, histological lesions were still present in only 10 of 12 (83%) pts. TNS score was 99, 98, 98, and 101 at the 3rd, 6th, 9th, and 12th month after the GFD was started, so it did not improve throughout the follow-up. None of the pts showed disappearance of antineuronal antibodies throughout the follow-up. We conclude that adult CD patients may show neurological damage and presence of antineuronal antibodies. Unfortunately, these findings do not disappear with a GFD

    Probing the magnetism of topological end states in 5-armchair graphene nanoribbons

    Get PDF
    We extensively characterize the electronic structure of ultranarrow graphene nanoribbons (GNRs) with armchair edges and zigzag termini that have five carbon atoms across their width (5-AGNRs), as synthesized on Au(111). Scanning tunneling spectroscopy measurements on the ribbons, recorded on both the metallic substrate and a decoupling NaCl layer, show well-defined dispersive bands and in-gap states. In combination with theoretical calculations, we show how these in-gap states are topological in nature and localized at the zigzag termini of the nanoribbons. In addition to rationalizing the driving force behind the topological class selection of 5-AGNRs, we also uncover the length-dependent behavior of these end states which transition from singly occupied spin-split states to a closed-shell form as the ribbons become shorter. Finally, we demonstrate the magnetic character of the end states via transport experiments in a model two-terminal device structure in which the ribbons are suspended between the scanning probe and the substrate that both act as leads.We acknowledge funding from the European Union’s Horizon 2020 programme (Grant Agreement Nos. 635919 and 863098 from ERC and FET Open projects, respectively), from the Spanish MINECO (Grant Nos. FIS2017-83780-P and MAT2016-78293-C6), and from the University of the Basque Country (Grant IT1246-19). D.G.O. thanks the Alexander von Humboldt Foundation for supporting his research stay at the MPI, and Klaus Kern for hosting him.Peer reviewe

    Nampt over-expression recapitulates the braf inhibitor resistant phenotype plasticity in melanoma

    Get PDF
    Serine–threonine protein kinase B-RAF (BRAF)-mutated metastatic melanoma (MM) is a highly aggressive type of skin cancer. Treatment of MM patients using BRAF/MEK inhibitors (BRAFi/MEKi) eventually leads to drug resistance, limiting any clinical benefit. Herein, we demonstrated that the nicotinamide adenine dinucleotide (NAD)-biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT) is a driving factor in BRAFi resistance development. Using stable and inducible NAMPT over-expression systems, we showed that forced NAMPT expression in MM BRAF-mutated cell lines led to increased energy production, MAPK activation, colony-formation capacity, and enhance tumorigenicity in vivo. Moreover, NAMPT over-expressing cells switched toward an invasive/mesenchymal phenotype, up-regulating expression of ZEB1 and TWIST, two transcription factors driving the epithelial to mesenchymal transition (EMT) process. Consistently, within the NAMPT-overexpressing cell line variants, we observed an increased percentage of a rare, drug-effluxing stem cell-like side population (SP) of cells, paralleled by up-regulation of ABCC1/MRP1 expression and CD133-positive cells. The direct correlation between NAMPT expression and gene set enrichments involving metastasis, invasiveness and mesenchymal/stemness properties were verified also in melanoma patients by analyzing The Cancer Genome Atlas (TCGA) datasets. On the other hand, CRISPR/Cas9 full knock-out NAMPT BRAFi-resistant MM cells are not viable, while inducible partial silencing drastically reduces tumor growth and aggressiveness. Overall, this work revealed that NAMPT over-expression is both necessary and sufficient to recapitulate the BRAFi-resistant phenotype plasticity

    Nampt over-expression recapitulates the braf inhibitor resistant phenotype plasticity in melanoma

    Get PDF
    Serine–threonine protein kinase B-RAF (BRAF)-mutated metastatic melanoma (MM) is a highly aggressive type of skin cancer. Treatment of MM patients using BRAF/MEK inhibitors (BRAFi/MEKi) eventually leads to drug resistance, limiting any clinical benefit. Herein, we demonstrated that the nicotinamide adenine dinucleotide (NAD)-biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT) is a driving factor in BRAFi resistance development. Using stable and inducible NAMPT over-expression systems, we showed that forced NAMPT expression in MM BRAF-mutated cell lines led to increased energy production, MAPK activation, colony-formation capacity, and enhance tumorigenicity in vivo. Moreover, NAMPT over-expressing cells switched toward an invasive/mesenchymal phenotype, up-regulating expression of ZEB1 and TWIST, two transcription factors driving the epithelial to mesenchymal transition (EMT) process. Consistently, within the NAMPT-overexpressing cell line variants, we observed an increased percentage of a rare, drug-effluxing stem cell-like side population (SP) of cells, paralleled by up-regulation of ABCC1/MRP1 expression and CD133-positive cells. The direct correlation between NAMPT expression and gene set enrichments involving metastasis, invasiveness and mesenchymal/stemness properties were verified also in melanoma patients by analyzing The Cancer Genome Atlas (TCGA) datasets. On the other hand, CRISPR/Cas9 full knock-out NAMPT BRAFi-resistant MM cells are not viable, while inducible partial silencing drastically reduces tumor growth and aggressiveness. Overall, this work revealed that NAMPT over-expression is both necessary and sufficient to recapitulate the BRAFi-resistant phenotype plasticity

    Thomas Baxter Follow Up From Wendy Edelberg

    Get PDF

    Challenges of keyword-based location disclosure

    Full text link
    A practical solution to location privacy should be incremen-tally deployable. We claim it should hence reconcile the eco-nomic value of location to aggregators, usually ignored by prior works, with a user’s control over her information. Loca-tion information indeed is being collected and used by many mobile services to improve revenues, and this gives rise to a heated debate: Privacy advocates ask for stricter regula-tion on information collection, while companies argue that it would jeopardize the thriving economy of the mobile web. We describe a system that gives users control over their information and does not degrade the data given to aggre-gators. Recognizing that the first challenge is to express lo-cations in a way that is meaningful for advertisers and users, we propose a keyword based design. Keywords characterize locations, let the users inform the system about their sen-sitivity to disclosure, and build information directly usable by an advertiser’s targeting campaign. Our work makes two main contributions: we design a market of location infor-mation based on keywords and we analyze its robustness to attacks using data from ad-networks, geo-located services, and cell networks. Categories and Subject Descriptors Security and Privacy [Human and societal aspects of security and privacy]: Usability in security and privac

    Using fahp-vikor for operation selection in the flexible job-shop scheduling problem: A case study in textile industry

    Get PDF
    Scheduling of Flexible Job Shop Systems is a combinatorial problem which has been addressed by several heuristics and meta-heuristics. Nevertheless, the operation selection rules of both methods are limited to an ordered variant wherein priority-dispatching rules are not simultaneously deemed in the reported literature. Therefore, this paper presents the application of dispatching algorithm with operation selection based on Fuzzy Analytic Hierarchy Process (FAHP) and VIKOR methods while considering setup times and transfer batches. Dispatching, FAHP, and VIKOR algorithms are first defined. Second, a multi-criteria decision-making model is designed for operation prioritization. Then, FAHP is applied to calculate the criteria weights and overcome the uncertainty of human judgments. Afterwards, VIKOR is used to select the operation with the highest priority. A case study in the textile industry is shown to validate this approach. The results evidenced, compared to the company solution, a reduction of 61.05% in average delay

    Is Privacy Controllable?

    Full text link
    One of the major views of privacy associates privacy with the control over information. This gives rise to the question how controllable privacy actually is. In this paper, we adapt certain formal methods of control theory and investigate the implications of a control theoretic analysis of privacy. We look at how control and feedback mechanisms have been studied in the privacy literature. Relying on the control theoretic framework, we develop a simplistic conceptual control model of privacy, formulate privacy controllability issues and suggest directions for possible research.Comment: The final publication will be available at Springer via http://dx.doi.org/ [in press

    Decomposition techniques with mixed integer programming and heuristics for home healthcare planning

    Get PDF
    We tackle home healthcare planning scenarios in the UK using decomposition methods that incorporate mixed integer programming solvers and heuristics. Home healthcare planning is a difficult problem that integrates aspects from scheduling and routing. Solving real-world size instances of these problems still presents a significant challenge to modern exact optimization solvers. Nevertheless, we propose decomposition techniques to harness the power of such solvers while still offering a practical approach to produce high-quality solutions to real-world problem instances. We first decompose the problem into several smaller sub-problems. Next, mixed integer programming and/or heuristics are used to tackle the sub-problems. Finally, the sub-problem solutions are combined into a single valid solution for the whole problem. The different decomposition methods differ in the way in which subproblems are generated and the way in which conflicting assignments are tackled (i.e. avoided or repaired). We present the results obtained by the proposed decomposition methods and compare them to solutions obtained with other methods. In addition, we conduct a study that reveals how the different steps in the proposed method contribute to those results. The main contribution of this paper is a better understanding of effective ways to combine mixed integer programming within effective decomposition methods to solve real-world instances of home healthcare planning problems in practical computation time
    corecore