30 research outputs found
The fate of Earth’s ocean
Questions of how water arrived on the Earth’s surface, how much water is contained in the Earth system as a whole, and how much water will be available in the future in the surface reservoirs are of central importance to our understanding of the Earth. To answer the question about the fate of the Earth’s ocean, one has to study the global water cycle under conditions of internal and external forcing processes. Modern estimates suggest that the transport of water to the surface is five times smaller than water movement to the mantle, so that the Earth will lose all its sea-water in one billion years from now. This straightforward extrapolation of subduction-zone fluxes into the future seems doubtful. Using a geophysical modelling approach it was found that only 27% of the modern ocean will be subducted in one billion years. Internal feedbacks will not be the cause of the ocean drying out. Instead, the drying up of surface reservoirs in the future will be due to the increase in temperature caused by a maturing Sun connected to hydrogen escape to outer space.</p> <p style='line-height: 20px;'><b>Keywords: </b>Surface water reservoir, water fluxes, regassing, degassing, global water cycl
Habitability of Super-Earths: Gliese 581c and 581d
The unexpected diversity of exoplanets includes a growing number of
super-Earth planets, i.e., exoplanets with masses smaller than 10 Earth masses.
Unlike the larger exoplanets previously found, these smaller planets are more
likely to have a similar chemical and mineralogical composition to the Earth.
We present a thermal evolution model for super-Earth planets to identify the
sources and sinks of atmospheric carbon dioxide. The photosynthesis-sustaining
habitable zone (pHZ) is determined by the limits of biological productivity on
the planetary surface. We apply our model to calculate the habitability of the
two super-Earths in the Gliese 581 system. The super-Earth Gl 581c is clearly
outside the pHZ, while Gl 581d is at the outer edge of the pHZ. Therefore it
could at least harbor some primitive forms of life.Comment: 3 pages, 1 figure; submitted to: Exoplanets: Detection, Formation and
Dynamics, IAU Symposium 249, eds. Y.-S. Sun, S. Ferraz-Mello, and J.-L. Zhou
(Cambridge: Cambridge University Press
Causes and timing of future biosphere extinctions
We present a minimal model for the global carbon cycle of the Earth containing the reservoirs mantle, ocean floor, continental crust, biosphere, and the kerogen, as well as the combined ocean and atmosphere reservoir. The model is specified by introducing three different types of biosphere: procaryotes, eucaryotes, and complex multicellular life. During the entire existence of the biosphere procaryotes are always present. 2 Gyr ago eucaryotic life first appears. The emergence of complex multicellular life is connected with an explosive increase in biomass and a strong decrease in Cambrian global surface temperature at about 0.54 Gyr ago. In the long-term future the three types of biosphere will die out in reverse sequence of their appearance. We show that there is no evidence for an implosion-like extinction in contrast to the Cambrian explosion. In dependence of their temperature tolerance complex multicellular life and eucaryotes become extinct in about 0.8–1.2 Gyr and 1.3–1.5 Gyr, respectively. The ultimate life span of the biosphere is defined by the extinction of procaryotes in about 1.6 Gyr
Habitability of Super-Earth Planets around Main-Sequence Stars including Red Giant Branch Evolution: Models based on the Integrated System Approach
In a previous study published in Astrobiology, we focused on the evolution of
habitability of a 10 M_E super-Earth planet orbiting a star akin to the Sun.
This study was based on a concept of planetary habitability in accordance to
the integrated system approach that describes the photosynthetic biomass
production taking into account a variety of climatological, biogeochemical, and
geodynamical processes. In the present study, we pursue a significant
augmentation of our previous work by considering stars with zero-age main
sequence masses between 0.5 and 2.0 M_sun with special emphasis on models of
0.8, 0.9, 1.2 and 1.5 M_sun. Our models of habitability consider again
geodynamical processes during the main-sequence stage of these stars as well as
during their red giant branch evolution. Pertaining to the different types of
stars, we identify so-called photosynthesis-sustaining habitable zones (pHZ)
determined by the limits of biological productivity on the planetary surface.
We obtain various sets of solutions consistent with the principal possibility
of life. Considering that stars of relatively high masses depart from the
main-sequence much earlier than low-mass stars, it is found that the biospheric
life-span of super-Earth planets of stars with masses above approximately 1.5
M_sun is always limited by the increase in stellar luminosity. However, for
stars with masses below 0.9 M_sun, the life-span of super-Earths is solely
determined by the geodynamic time-scale. For central star masses between 0.9
and 1.5 M_sun, the possibility of life in the framework of our models depends
on the relative continental area of the super-Earth planet.Comment: 25 pages, 6 figures, 2 tables; submitted to: International Journal of
Astrobiolog
Recommended from our members
Long-term evolution of the global carbon cycle: Historic minimum of global surface temperature at present
We present a minimal model for the global carbon cycle of the Earth containing the reservoirs mantle, ocean floor, continental crust, continental biosphere, and the kerogen, as well as the aggregated reservoir ocean and atmosphere. This model is coupled to a parameterised mantle convection model for describing the thermal and degassing history of the Earth. In this study the evolution of the mean global surface temperature, the biomass, and reservoir sizes over the whole history and future of the Earth under a maturing Sun is investigated. We obtain reasonable values for the present distribution of carbon in the surface reservoirs of the Earth and find that the parameterisation of the hydrothermal flux and the evolution of the ocean pH in the past has a strong influence on the atmospheric carbon reservoir and surface temperature. The different parameterisations give a rather hot as well as a freezing climate on the early Earth (Hadean and early Archaean). Nevertheless, we find a pronounced global minimum of mean surface temperature at the present state at 4.6 Gyr. In the long-term future the external forcing by increasing insolation dominates and the biosphere extincts in about 1.2 Ga. Our study has the implication that the Earth system is just before the point of evolution where this external forcing takes over the main influence from geodynamic effects acting in the past
Recommended from our members
Reduction of biosphere life span as a consequence of geodynamics
The long-term co-evolution of the geosphere-biosphere complex from the Proterozoic up to 1.5 billion years into the planet's future is investigated using a conceptual earth system model including the basic geodynamic processes. The model focusses on the global carbon cycles as mediated by life and driven by increasing solar luminosity and plate tectonics. The main CO2 sink, the weathering of silicates, is calculated as a function of biologic activity, global run-off and continental growth. The main CO2 source, tectonic processes dominated by sea-floor spreading, is determined using a novel semi-empirical scheme. Thus, a geodynamic extension of previous geostatic approaches can be achieved. As a major result of extensive numerical investigations, the 'terrestrial life corridor', i.e., the biogeophysical domain supporting a photosynthesis-based ecosphere in the planetary past and in the future, can be identified. Our findings imply, in particular, that the remaining life-span of the biosphere is considerably shorter (by a few hundred million years) than the value computed with geostatic models by other groups. The 'habitable-zone concept' is also revisited, revealing the band of orbital distances from the sun warranting earth-like conditions. It turns out that this habitable zone collapses completely in some 1.4 billion years from now as a consequence of geodynamics
Habitability of the Goldilocks Planet Gliese 581g: Results from Geodynamic Models
Aims: In 2010, detailed observations have been published that seem to
indicate another super-Earth planet in the system of Gliese 581 located in the
midst of the stellar climatological habitable zone. The mass of the planet,
known as Gl 581g, has been estimated to be between 3.1 and 4.3 Earth masses. In
this study, we investigate the habitability of Gl 581g based on a previously
used concept that explores its long-term possibility of photosynthetic biomass
production, which has already been used to gauge the principal possibility of
life regarding the super-Earths Gl 581c and Gl 581d. Methods: A thermal
evolution model for super-Earths is used to calculate the sources and sinks of
atmospheric carbon dioxide. The habitable zone is determined by the limits of
photosynthetic biological productivity on the planetary surface. Models with
different ratios of land / ocean coverage are pursued. Results: The maximum
time span for habitable conditions is attained for water worlds at a position
of about 0.14+/-0.015 AU, which deviates by just a few percent (depending on
the adopted stellar luminosity) from the actual position of Gl 581g, an
estimate that does however not reflect systematic uncertainties inherent in our
model. Therefore, in the framework of our model an almost perfect Goldilock
position is realized. The existence of habitability is found to critically
depend on the relative planetary continental area, lending a considerable
advantage to the possibility of life if Gl 581g's ocean coverage is relatively
high. Conclusions: Our results are a further step toward identifying the
possibility of life beyond the Solar System, especially concerning super-Earth
planets, which appear to be more abundant than previously surmised.Comment: 5 pages, 3 figures, 1 table; in pres
The habitability of super-Earths in Gliese 581
Aims: The planetary system around the M star Gliese 581 consists of a hot
Neptune (Gl 581b) and two super-Earths (Gl 581c and Gl 581d). The habitability
of this system with respect to the super-Earths is investigated following a
concept that studies the long-term possibility of photosynthetic biomass
production on a dynamically active planet. Methods: A thermal evolution model
for a super-Earth is used to calculate the sources and sinks of atmospheric
carbon dioxide. The habitable zone is determined by the limits of biological
productivity on the planetary surface. Models with different ratios of land /
ocean coverage are investigated. Results: The super-Earth Gl 581c is clearly
outside the habitable zone, since it is too close to the star. In contrast, Gl
581d is a tidally locked habitable super-Earth near the outer edge of the
habitable zone. Despite the adverse conditions on this planet, at least some
primitive forms of life may be able to exist on its surface.Therefore, Gl 581d
is an interesting target for the planned TPF/Darwin missions to search for
biomarkers in planetary atmospheres.Comment: 6 pages, 4 figures, 2 table
Habitable Zones in the Universe
Habitability varies dramatically with location and time in the universe. This
was recognized centuries ago, but it was only in the last few decades that
astronomers began to systematize the study of habitability. The introduction of
the concept of the habitable zone was key to progress in this area. The
habitable zone concept was first applied to the space around a star, now called
the Circumstellar Habitable Zone. Recently, other, vastly broader, habitable
zones have been proposed. We review the historical development of the concept
of habitable zones and the present state of the research. We also suggest ways
to make progress on each of the habitable zones and to unify them into a single
concept encompassing the entire universe.Comment: 71 pages, 3 figures, 1 table; to be published in Origins of Life and
Evolution of Biospheres; table slightly revise