56 research outputs found

    Prodrug Strategy for PSMA-targeted Delivery of TGX-221 to Prostate Cancer Cells

    Get PDF
    TGX-221 is a potent, selective, and cell membrane permeable inhibitor of the PI3K p110β catalytic subunit. Recent studies showed that TGX-221 has anti-proliferative activity against PTEN-deficient tumor cell lines including prostate cancers. The objective of this study was to develop an encapsulation system for parenterally delivering TGX-221 to the target tissue through a prostate-specific membrane aptamer (PSMAa10) with little or no side effects. In this study, PEG-PCL micelles were formulated to encapsulate the drug, and a prodrug strategy was pursued to improve the stability of the carrier system. Fluorescence imaging studies demonstrated that the cellular uptake of both drug and nanoparticles were significantly improved by targeted micelles in a PSMA positive cell line. The area under the plasma concentration time curve of the micelle formulation in nude mice was 2.27-fold greater than the naked drug, and the drug clearance rate was 17.5-fold slower. These findings suggest a novel formulation approach for improving site-specific drug delivery of a molecular-targeted prostate cancer treatment

    Selective Inhibition of Retinal Angiogenesis by Targeting PI3 Kinase

    Get PDF
    Ocular neovascularisation is a pathological hallmark of some forms of debilitating blindness including diabetic retinopathy, age related macular degeneration and retinopathy of prematurity. Current therapies for delaying unwanted ocular angiogenesis include laser surgery or molecular inhibition of the pro-angiogenic factor VEGF. However, targeting of angiogenic pathways other than, or in combination to VEGF, may lead to more effective and safer inhibitors of intraocular angiogenesis. In a small chemical screen using zebrafish, we identify LY294002 as an effective and selective inhibitor of both developmental and ectopic hyaloid angiogenesis in the eye. LY294002, a PI3 kinase inhibitor, exerts its anti-angiogenic effect in a dose-dependent manner, without perturbing existing vessels. Significantly, LY294002 delivered by intraocular injection, significantly inhibits ocular angiogenesis without systemic side-effects and without diminishing visual function. Thus, targeting of PI3 kinase pathways has the potential to effectively and safely treat neovascularisation in eye disease

    Epithelial to Mesenchymal Transition of a Primary Prostate Cell Line with Switches of Cell Adhesion Modules but without Malignant Transformation

    Get PDF
    Background: Epithelial to mesenchymal transition (EMT) has been connected with cancer progression in vivo and the generation of more aggressive cancer cell lines in vitro. EMT has been induced in prostate cancer cell lines, but has previously not been shown in primary prostate cells. The role of EMT in malignant transformation has not been clarified. Methodology/Principal Findings: In a transformation experiment when selecting for cells with loss of contact inhibition, the immortalized prostate primary epithelial cell line, EP156T, was observed to undergo EMT accompanied by loss of contact inhibition after about 12 weeks in continuous culture. The changed new cells were named EPT1. EMT of EPT1 was characterized by striking morphological changes and increased invasion and migration compared with the original EP156T cells. Gene expression profiling showed extensively decreased epithelial markers and increased mesenchymal markers in EPT1 cells, as well as pronounced switches of gene expression modules involved in cell adhesion and attachment. Transformation assays showed that EPT1 cells were sensitive to serum or growth factor withdrawal. Most importantly, EPT1 cells were not able to grow in an anchorage-independent way in soft agar, which is considered a critical feature of malignant transformation. Conclusions/Significance: This work for the first time established an EMT model from primary prostate cells. The results show that EMT can be activated as a coordinated gene expression program in association with early steps of transformation. The model allows a clearer identification of the molecular mechanisms of EMT and its potential role in malignant transformation

    IL-3 and oncogenic Abl regulate the myeloblast transcriptome by altering mRNA stability

    Get PDF
    The growth factor interleukin-3 (IL-3) promotes the survival and growth of multipotent hematopoietic progenitors and stimulates myelopoiesis. It has also been reported to oppose terminal granulopoiesis and to support leukemic cell growth through autocrine or paracrine mechanisms. The degree to which IL-3 acts at the posttranscriptional level is largely unknown. We have conducted global mRNA decay profiling and bioinformatic analyses in 32Dcl3 myeloblasts indicating that IL-3 caused immediate early stabilization of hundreds of transcripts in pathways relevant to myeloblast function. Stabilized transcripts were enriched for AU-Response elements (AREs), and an ARE-containing domain from the interleukin-6 (IL-6) 3′-UTR rendered a heterologous gene responsive to IL-3-mediated transcript stabilization. Many IL-3-stabilized transcripts had been associated with leukemic transformation. Deregulated Abl kinase shared with IL-3 the ability to delay turnover of transcripts involved in proliferation or differentiation blockade, relying, in part, on signaling through the Mek/ Erk pathway. These findings support a model of IL-3 action through mRNA stability control and suggest that aberrant stabilization of an mRNA network linked to IL-3 contributes to leukemic cell growth. © 2009 Ernst et al

    Connexins orchestrate progression of breast cancer metastasis to the brain by promoting FAK activation.

    No full text
    Brain metastasis is a complication of increasing incidence in patients with breast cancer at advanced disease stage. It is a severe condition characterized by a rapid decline in quality of life and poor prognosis. There is a critical clinical need to develop effective therapies to prevent and treat brain metastases. Here, we describe a unique and robust spontaneous preclinical model of breast cancer metastasis to the brain (4T1-BM <sub>2</sub> ) in mice that has been instrumental in uncovering molecular mechanisms guiding metastatic dissemination and colonization of the brain. Key experimental findings were validated in the additional murine D2A1-BM <sub>2</sub> model and in human MDA231-BrM <sub>2</sub> model. Gene expression analyses and functional studies, coupled with clinical transcriptomic and histopathological investigations, identified connexins (Cxs) and focal adhesion kinase (FAK) as master molecules orchestrating breast cancer colonization of the brain. Cx31 promoted homotypic tumor cell adhesion, heterotypic tumor-astrocyte interaction, and FAK phosphorylation. FAK signaling prompted NF-κB activation inducing Lamc2 expression and laminin 332 (laminin 5) deposition, α6 integrin-mediated adhesion, and sustained survival and growth within brain parenchyma. In the MDA231-BrM <sub>2</sub> model, the human homologous molecules CX43, LAMA4, and α3 integrin were involved. Systemic treatment with FAK inhibitors reduced brain metastasis progression. In conclusion, we report a spontaneous model of breast cancer metastasis to the brain and identified Cx-mediated FAK-NF-κB signaling as a mechanism promoting cell-autonomous and microenvironmentally controlled cell survival for brain colonization. Considering the limited therapeutic options for brain metastatic disease in cancer patients, we propose FAK as a therapeutic candidate to further pursue in the clinic
    corecore