436 research outputs found

    Abelian gauge theories on compact manifolds and the Gribov ambiguity

    Full text link
    We study the quantization of abelian gauge theories of principal torus bundles over compact manifolds with and without boundary. It is shown that these gauge theories suffer from a Gribov ambiguity originating in the non-triviality of the bundle of connections whose geometrical structure will be analyzed in detail. Motivated by the stochastic quantization approach we propose a modified functional integral measure on the space of connections that takes the Gribov problem into account. This functional integral measure is used to calculate the partition function, the Greens functions and the field strength correlating functions in any dimension using the fact that the space of inequivalent connections itself admits the structure of a bundle over a finite dimensional torus. The Greens functions are shown to be affected by the non-trivial topology, giving rise to non-vanishing vacuum expectation values for the gauge fields.Comment: 33 page

    Analytic structure of solutions to multiconfiguration equations

    Get PDF
    We study the regularity at the positions of the (fixed) nuclei of solutions to (non-relativistic) multiconfiguration equations (including Hartree--Fock) of Coulomb systems. We prove the following: Let {phi_1,...,phi_M} be any solution to the rank--M multiconfiguration equations for a molecule with L fixed nuclei at R_1,...,R_L in R^3. Then, for any j in {1,...,M} and k in {1,...,L}, there exists a neighbourhood U_{j,k} in R^3 of R_k, and functions phi^{(1)}_{j,k}, phi^{(2)}_{j,k}, real analytic in U_{j,k}, such that phi_j(x) = phi^{(1)}_{j,k}(x) + |x - R_k| phi^{(2)}_{j,k}(x), x in U_{j,k} A similar result holds for the corresponding electron density. The proof uses the Kustaanheimo--Stiefel transformation, as applied earlier by the authors to the study of the eigenfunctions of the Schr"odinger operator of atoms and molecules near two-particle coalescence points.Comment: 15 page

    On unbounded bodies with finite mass: asymptotic behaviour

    Get PDF
    There is introduced a class of barotropic equations of state (EOS) which become polytropic of index n=5n = 5 at low pressure. One then studies asymptotically flat solutions of the static Einstein equations coupled to perfect fluids having such an EOS. It is shown that such solutions, in the same manner as the vacuum ones, are conformally smooth or analytic at infinity, when the EOS is smooth or analytic, respectively.Comment: 6 page

    General existence proof for rest frame systems in asymptotically flat space-time

    Full text link
    We report a new result on the nice section construction used in the definition of rest frame systems in general relativity. This construction is needed in the study of non trivial gravitational radiating systems. We prove existence, regularity and non-self-crossing property of solutions of the nice section equation for general asymptotically flat space times. This proves a conjecture enunciated in a previous work.Comment: 14 pages, no figures, LaTeX 2

    Analysis of optical flow models in the framework of calculus of variations

    Get PDF
    In image sequence analysis, variational optical flow computations require the solution of a parameter dependent optimization problem with a data term and a regularizer. In this paper we study existence and uniqueness of the optimizers. Our studies rely on quasiconvex functionals on the spaces W¹,P(Ω, IRd), with p > 1, BV(Ω, IRd), BD(&Omeag;). The methods that are covered by our results include several existing techniques. Experiments are presented that illustrate the behavior of these approaches

    The Cauchy problems for Einstein metrics and parallel spinors

    Full text link
    We show that in the analytic category, given a Riemannian metric gg on a hypersurface MZM\subset \Z and a symmetric tensor WW on MM, the metric gg can be locally extended to a Riemannian Einstein metric on ZZ with second fundamental form WW, provided that gg and WW satisfy the constraints on MM imposed by the contracted Codazzi equations. We use this fact to study the Cauchy problem for metrics with parallel spinors in the real analytic category and give an affirmative answer to a question raised in B\"ar, Gauduchon, Moroianu (2005). We also answer negatively the corresponding questions in the smooth category.Comment: 28 pages; final versio

    Ginzburg-Landau model with small pinning domains

    Full text link
    We consider a Ginzburg-Landau type energy with a piecewise constant pinning term aa in the potential (a2u2)2(a^2 - |u|^2)^2. The function aa is different from 1 only on finitely many disjoint domains, called the {\it pinning domains}. These pinning domains model small impurities in a homogeneous superconductor and shrink to single points in the limit ˇ0\v\to0; here, \v is the inverse of the Ginzburg-Landau parameter. We study the energy minimization in a smooth simply connected domain ΩC\Omega \subset \mathbb{C} with Dirichlet boundary condition gg on \d \O, with topological degree {\rm deg}_{\d \O} (g) = d >0. Our main result is that, for small \v, minimizers have dd distinct zeros (vortices) which are inside the pinning domains and they have a degree equal to 1. The question of finding the locations of the pinning domains with vortices is reduced to a discrete minimization problem for a finite-dimensional functional of renormalized energy. We also find the position of the vortices inside the pinning domains and show that, asymptotically, this position is determined by {\it local renormalized energy} which does not depend on the external boundary conditions.Comment: 39 page

    Topological and geometrical restrictions, free-boundary problems and self-gravitating fluids

    Full text link
    Let (P1) be certain elliptic free-boundary problem on a Riemannian manifold (M,g). In this paper we study the restrictions on the topology and geometry of the fibres (the level sets) of the solutions f to (P1). We give a technique based on certain remarkable property of the fibres (the analytic representation property) for going from the initial PDE to a global analytical characterization of the fibres (the equilibrium partition condition). We study this analytical characterization and obtain several topological and geometrical properties that the fibres of the solutions must possess, depending on the topology of M and the metric tensor g. We apply these results to the classical problem in physics of classifying the equilibrium shapes of both Newtonian and relativistic static self-gravitating fluids. We also suggest a relationship with the isometries of a Riemannian manifold.Comment: 36 pages. In this new version the analytic representation hypothesis is proved. Please address all correspondence to D. Peralta-Sala

    An optimal gap theorem

    Get PDF
    By solving the Cauchy problem for the Hodge-Laplace heat equation for dd-closed, positive (1,1)(1, 1)-forms, we prove an optimal gap theorem for K\"ahler manifolds with nonnegative bisectional curvature which asserts that the manifold is flat if the average of the scalar curvature over balls of radius rr centered at any fixed point oo is a function of o(r2)o(r^{-2}). Furthermore via a relative monotonicity estimate we obtain a stronger statement, namely a `positive mass' type result, asserting that if (M,g)(M, g) is not flat, then lim infrr2Vo(r)Bo(r)S(y)dμ(y)>0\liminf_{r\to \infty} \frac{r^2}{V_o(r)}\int_{B_o(r)}\mathcal{S}(y)\, d\mu(y)>0 for any oMo\in M
    corecore