3,072 research outputs found

    Exploring the grand-canonical phase diagram of interacting bosons in optical lattices by trap squeezing

    Full text link
    In this paper we theoretically discuss how quantum simulators based on trapped cold bosons in optical lattices can explore the grand-canonical phase diagram of homogeneous lattice boson models, via control of the trapping potential independently of all other experimental parameters (trap squeezing). Based on quantum Monte Carlo, we establish the general scaling relation linking the global chemical potential to the Hamiltonian parameters of the Bose-Hubbard model in a parabolic trap, describing cold bosons in optical lattices; we find that this scaling relation is well captured by a modified Thomas-Fermi scaling behavior - corrected for quantum fluctuations - in the case of high enough density and/or weak enough interactions, and by a mean-field Gutzwiller Ansatz over a much larger parameter range. The above scaling relation allows to control experimentally the chemical potential, independently of all other Hamiltonian parameters, via trap squeezing; given that the global chemical potential coincides with the local chemical potential in the trap center, measurements of the central density as a function of the chemical potential gives access to the information on the bulk compressibility of the Bose-Hubbard model. Supplemented with time-of-flight measurements of the coherence properties, the measurement of compressibility enables one to discern among the various possible phases realized by bosons in an optical lattice with or without external (periodic or random) potentials -- e.g. superfluid, Mott insulator, band insulator, and Bose glass. We theoretically demonstrate the trap-squeezing investigation of the above phases in the case of bosons in a one-dimensional optical lattice, and in a one-dimensional incommensurate superlattice.Comment: 27 pages, 26 figures. v2: added references and further discussion of the local-density approximation

    Order in extremal trajectories

    Full text link
    Given a chaotic dynamical system and a time interval in which some quantity takes an unusually large average value, what can we say of the trajectory that yields this deviation? As an example, we study the trajectories of the archetypical chaotic system, the baker's map. We show that, out of all irregular trajectories, a large-deviation requirement selects (isolated) orbits that are periodic or quasiperiodic. We discuss what the relevance of this calculation may be for dynamical systems and for glasses

    Mode solutions for a Klein-Gordon field in anti-de Sitter spacetime with dynamical boundary conditions of Wentzell type

    Full text link
    We study a real, massive Klein-Gordon field in the Poincar\'e fundamental domain of the (d+1)(d+1)-dimensional anti-de Sitter (AdS) spacetime, subject to a particular choice of dynamical boundary conditions of generalized Wentzell type, whereby the boundary data solves a non-homogeneous, boundary Klein-Gordon equation, with the source term fixed by the normal derivative of the scalar field at the boundary. This naturally defines a field in the conformal boundary of the Poincar\'e fundamental domain of AdS. We completely solve the equations for the bulk and boundary fields and investigate the existence of bound state solutions, motivated by the analogous problem with Robin boundary conditions, which are recovered as a limiting case. Finally, we argue that both Robin and generalized Wentzell boundary conditions are distinguished in the sense that they are invariant under the action of the isometry group of the AdS conformal boundary, a condition which ensures in addition that the total flux of energy across the boundary vanishes.Comment: 12 pages, 1 figure. In V3: refs. added, introduction and conclusions expande

    The Exact Ground State of the Frenkel-Kontorova Model with Repeated Parabolic Potential: I. Basic Results

    Full text link
    The problem of finding the exact energies and configurations for the Frenkel-Kontorova model consisting of particles in one dimension connected to their nearest-neighbors by springs and placed in a periodic potential consisting of segments from parabolas of identical (positive) curvature but arbitrary height and spacing, is reduced to that of minimizing a certain convex function defined on a finite simplex.Comment: 12 RevTeX pages, using AMS-Fonts (amssym.tex,amssym.def), 6 Postscript figures, accepted by Phys. Rev.

    Controlling Mixing Inside a Droplet by Time Dependent Rigid-body Rotation

    Full text link
    The use of microscopic discrete fluid volumes (i.e., droplets) as microreactors for digital microfluidic applications often requires mixing enhancement and control within droplets. In this work, we consider a translating spherical liquid droplet to which we impose a time periodic rigid-body rotation which we model using the superposition of a Hill vortex and an unsteady rigid body rotation. This perturbation in the form of a rotation not only creates a three-dimensional chaotic mixing region, which operates through the stretching and folding of material lines, but also offers the possibility of controlling both the size and the location of the mixing. Such a control is achieved by judiciously adjusting the three parameters that characterize the rotation, i.e., the rotation amplitude, frequency and orientation of the rotation. As the size of the mixing region is increased, complete mixing within the drop is obtained.Comment: 6 pages, 6 figure

    Retrieving time-dependent Green's functions in optics with low-coherence interferometry

    Full text link
    We report on the passive measurement of time-dependent Green's functions in the optical frequency domain with low-coherence interferometry. Inspired by previous studies in acoustics and seismology, we show how the correlations of a broadband and incoherent wave-field can directly yield the Green's functions between scatterers of a complex medium. Both the ballistic and multiple scattering components of the Green's function are retrieved. This approach opens important perspectives for optical imaging and characterization in complex scattering media.Comment: 5 pages, 4 figure

    Finite-size effects in Anderson localization of one-dimensional Bose-Einstein condensates

    Full text link
    We investigate the disorder-induced localization transition in Bose-Einstein condensates for the Anderson and Aubry-Andre models in the non-interacting limit using exact diagonalization. We show that, in addition to the standard superfluid fraction, other tools such as the entanglement and fidelity can provide clear signatures of the transition. Interestingly, the fidelity exhibits good sensitivity even for small lattices. Effects of the system size on these quantities are analyzed in detail, including the determination of a finite-size-scaling law for the critical disorder strength in the case of the Anderson model.Comment: 15 pages, 7 figure

    On inward motion of the magnetopause preceding a substorm

    Get PDF
    Magnetopause inward motion preceding magnetic storms observed by means of OGO-E magnetomete
    corecore