2,934 research outputs found

    Entanglement between an electron and a nuclear spin 1/2

    Get PDF
    We report on the preparation and detection of entangled states between an electron spin 1/2 and a nuclear spin 1/2 in a molecular single crystal. These were created by applying pulses at ESR (9.5 GHz) and NMR (28 MHz) frequencies. Entanglement was detected by using a special entanglement detector sequence based on a unitary back transformation including phase rotation.Comment: 4 pages, 3 figure

    Entangled photons from a strongly coupled quantum dot-cavity system

    Full text link
    A quantum dot strongly coupled to a photonic crystal has been recently proposed as a source of entangled photon pairs [R. Johne et al., Phys. Rev. Lett. 100, 240404 (2008)]. The biexction decay via intermediate polariton states can be used to overcome the natural splitting between the exciton states coupled to the horizontally and vertically polarized light modes, so that high degrees of entanglement can be expected. We investigate theoretically the features of realistic dot-cavity systems, including the effect of the different oscillator strength of excitons resonances coupled to the different polarizations of light. We show that in this case, an independent adjustment of the cavity resonances is needed in order to keep a high entanglement degree. We also consider the case when the biexciton-exciton transition is also strongly coupled to a cavity mode. We show that a very fast emission rate can be achieved allowing the repetition rates in the THz range. Such fast emission should however be paid for by a very complex tuning of the many strongly coupled resonances involved and by a loss of quantum efficiency. Altogether a strongly coupled dot-cavity system seems to be very promising as a source of entangled photon pairs.Comment: 7 pages, 5 figure

    Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity

    Full text link
    We show theoretically that entangled photon pairs can be produced on demand through the biexciton decay of a quantum dot strongly coupled to the modes of a photonic crystal. The strong coupling allows to tune the energy of the mixed exciton-photon (polariton) eigenmodes, and to overcome the natural splitting existing between the exciton states coupled with different linear polarizations of light. Polariton states are moreover well protected against dephasing due to their lifetime ten to hundred times shorter than that of a bare exciton. Our analysis shows that the scheme proposed can be achievable with the present technology

    Using of small-scale quantum computers in cryptography with many-qubit entangled states

    Full text link
    We propose a new cryptographic protocol. It is suggested to encode information in ordinary binary form into many-qubit entangled states with the help of a quantum computer. A state of qubits (realized, e.g., with photons) is transmitted through a quantum channel to the addressee, who applies a quantum computer tuned to realize the inverse unitary transformation decoding of the message. Different ways of eavesdropping are considered, and an estimate of the time needed for determining the secret unitary transformation is given. It is shown that using even small quantum computers can serve as a basis for very efficient cryptographic protocols. For a suggested cryptographic protocol, the time scale on which communication can be considered secure is exponential in the number of qubits in the entangled states and in the number of gates used to construct the quantum network

    Geometry of the 3-Qubit State, Entanglement and Division Algebras

    Full text link
    We present a generalization to 3-qubits of the standard Bloch sphere representation for a single qubit and of the 7-dimensional sphere representation for 2 qubits presented in Mosseri {\it et al.}\cite{Mosseri2001}. The Hilbert space of the 3-qubit system is the 15-dimensional sphere S15S^{15}, which allows for a natural (last) Hopf fibration with S8S^8 as base and S7S^7 as fiber. A striking feature is, as in the case of 1 and 2 qubits, that the map is entanglement sensitive, and the two distinct ways of un-entangling 3 qubits are naturally related to the Hopf map. We define a quantity that measures the degree of entanglement of the 3-qubit state. Conjectures on the possibility to generalize the construction for higher qubit states are also discussed.Comment: 12 pages, 2 figures, final versio

    Entanglement of electrons in interacting molecules

    Get PDF
    Quantum entanglement is a concept commonly used with reference to the existence of certain correlations in quantum systems that have no classical interpretation. It is a useful resource to enhance the mutual information of memory channels or to accelerate some quantum processes as, for example, the factorization in Shor's Algorithm. Moreover, entanglement is a physical observable directly measured by the von Neumann entropy of the system. We have used this concept in order to give a physical meaning to the electron correlation energy in systems of interacting electrons. The electronic correlation is not directly observable, since it is defined as the difference between the exact ground state energy of the many--electrons Schroedinger equation and the Hartree--Fock energy. We have calculated the correlation energy and compared with the entanglement, as functions of the nucleus--nucleus separation using, for the hydrogen molecule, the Configuration Interaction method. Then, in the same spirit, we have analyzed a dimer of ethylene, which represents the simplest organic conjugate system, changing the relative orientation and distance of the molecules, in order to obtain the configuration corresponding to maximum entanglement.Comment: 15 pages, 7 figures, standard late

    Synthesis and evaluation of influenza A viral neuraminidase candidate inhibitors based on a bicyclo[3.1.0]hexane scaffold

    Get PDF
    We describe the synthesis of constrained oseltamivir analogues designed to mimic the proposed boat conformation of the enzymatic transition state

    Current Models of Investor State Dispute Settlement Are Bad for Health: The European Union Could Offer an Alternative Comment on "The Trans-Pacific Partnership: Is It Everything We Feared for Health?"

    Get PDF
    In this commentary, we endorse concerns about the health impact of the trans-pacific partnership (TPP), paying particular attention to its mechanisms for investor state dispute settlement. We then describe the different, judge-led approach being advocated by the European Commission team negotiating the Trans-Atlantic Trade and Investment Partnership, arguing that, while not perfect, it offers significant advantages

    Quantum state transfer and entanglement distribution among distant nodes in a quantum network

    Get PDF
    We propose a scheme to utilize photons for ideal quantum transmission between atoms located at spatially-separated nodes of a quantum network. The transmission protocol employs special laser pulses which excite an atom inside an optical cavity at the sending node so that its state is mapped into a time-symmetric photon wavepacket that will enter a cavity at the receiving node and be absorbed by an atom there with unit probability. Implementation of our scheme would enable reliable transfer or sharing of entanglement among spatially distant atoms.Comment: 4 pages, 3 postscript figure

    Observation of a Tricyclic[4.1.0.0 2,4]heptane During a Michael Addition-Ring Closure Reaction and a Computational Study on Its Mechanism of Formation

    Get PDF
    We describe the formation of a bis-cyclopropane product, a tricyclic[4.1.0.02,4]heptane, that is formed during a Johnson-Corey-Chaykovsky reaction on a cyclopentenone. Two (of four possible) bicyclic products are selectively formed by addition of a COOEt-stabilized sulfur ylide onto the Michael acceptor. The tricyclic product is formed subsequently via a retro Michael elimination of a hindered ether followed by addition of a further cyclopropyl moiety, affecting only one of the two bicyclic products initially formed. The experimental reaction outcome was rationalized using density functional theory (DFT), investigating the different Michael-addition approaches of the sulfur ylide, the transition state (TS) energies for the formation of possible zwitterionic intermediates and subsequent reactions that give rise to cyclopropanation. Selective formation of only two of the four possible products occurs due to the epimerization of unreactive intermediates from the other two pathways, as revealed by energy barrier calculations. The formation of the tricyclic product was rationalized by evaluation of energy barriers for proton abstraction required to form the intermediate undergoing the second cyclopropanation. The selectivity-guiding factors discussed for the single and double cyclopropanation of this functionalized Michael-acceptor will be useful guidelines for the synthesis of future singly and doubly cyclopropanated compounds
    • …
    corecore