22,858 research outputs found
Matrices coupled in a chain. I. Eigenvalue correlations
The general correlation function for the eigenvalues of complex hermitian
matrices coupled in a chain is given as a single determinant. For this we use a
slight generalization of a theorem of Dyson.Comment: ftex eynmeh.tex, 2 files, 8 pages Submitted to: J. Phys.
Calculation of some determinants using the s-shifted factorial
Several determinants with gamma functions as elements are evaluated. This
kind of determinants are encountered in the computation of the probability
density of the determinant of random matrices. The s-shifted factorial is
defined as a generalization for non-negative integers of the power function,
the rising factorial (or Pochammer's symbol) and the falling factorial. It is a
special case of polynomial sequence of the binomial type studied in
combinatorics theory. In terms of the gamma function, an extension is defined
for negative integers and even complex values. Properties, mainly composition
laws and binomial formulae, are given. They are used to evaluate families of
generalized Vandermonde determinants with s-shifted factorials as elements,
instead of power functions.Comment: 25 pages; added section 5 for some examples of application
Random matrix ensembles associated with Lax matrices
A method to generate new classes of random matrix ensembles is proposed.
Random matrices from these ensembles are Lax matrices of classically integrable
systems with a certain distribution of momenta and coordinates. The existence
of an integrable structure permits to calculate the joint distribution of
eigenvalues for these matrices analytically. Spectral statistics of these
ensembles are quite unusual and in many cases give rigorously new examples of
intermediate statistics
Finite-difference distributions for the Ginibre ensemble
The Ginibre ensemble of complex random matrices is studied. The complex
valued random variable of second difference of complex energy levels is
defined. For the N=3 dimensional ensemble are calculated distributions of
second difference, of real and imaginary parts of second difference, as well as
of its radius and of its argument (angle). For the generic N-dimensional
Ginibre ensemble an exact analytical formula for second difference's
distribution is derived. The comparison with real valued random variable of
second difference of adjacent real valued energy levels for Gaussian
orthogonal, unitary, and symplectic, ensemble of random matrices as well as for
Poisson ensemble is provided.Comment: 8 pages, a number of small changes in the tex
Generalization of the Poisson kernel to the superconducting random-matrix ensembles
We calculate the distribution of the scattering matrix at the Fermi level for
chaotic normal-superconducting systems for the case of arbitrary coupling of
the scattering region to the scattering channels. The derivation is based on
the assumption of uniformly distributed scattering matrices at ideal coupling,
which holds in the absence of a gap in the quasiparticle excitation spectrum.
The resulting distribution generalizes the Poisson kernel to the nonstandard
symmetry classes introduced by Altland and Zirnbauer. We show that unlike the
Poisson kernel, our result cannot be obtained by combining the maximum entropy
principle with the analyticity-ergodicity constraint. As a simple application,
we calculate the distribution of the conductance for a single-channel chaotic
Andreev quantum dot in a magnetic field.Comment: 7 pages, 2 figure
Glassy dynamics in granular compaction
Two models are presented to study the influence of slow dynamics on granular
compaction. It is found in both cases that high values of packing fraction are
achieved only by the slow relaxation of cooperative structures. Ongoing work to
study the full implications of these results is discussed.Comment: 12 pages, 9 figures; accepted in J. Phys: Condensed Matter,
proceedings of the Trieste workshop on 'Unifying concepts in glass physics
Two photon annihilation operators and squeezed vacuum
Inverses of the harmonic oscillator creation and annihilation operators by their actions on the number states are introduced. Three of the two photon annihilation operators, viz., a(sup +/-1)a, aa(sup +/-1), and a(sup 2), have normalizable right eigenstates with nonvanishing eigenvalues. The eigenvalue equation of these operators are discussed and their normalized eigenstates are obtained. The Fock state representation in each case separates into two sets of states, one involving only the even number states while the other involving only the odd number states. It is shown that the even set of eigenstates of the operator a(sup +/-1)a is the customary squeezed vacuum S(sigma) O greater than
A 3-component laser-Doppler velocimeter data acquisition and reduction system
A laser doppler velocimeter capable of measuring all three components of velocity simultaneously in low-speed flows is described. All the mean velocities, Reynolds stresses, and higher-order products can be evaluated. The approach followed is to split one of the two colors used in a 2-D system, thus creating a third set of beams which is then focused in the flow from an off-axis direction. The third velocity component is computed from the known geometry of the system. The laser optical hardware and the data acquisition electronics are described in detail. In addition, full operating procedures and listings of the software (written in BASIC and ASSEMBLY languages) are also included. Some typical measurements obtained with this system in a vortex/mixing layer interaction are presented and compared directly to those obtained with a cross-wire system
A Theory of Errors in Quantum Measurement
It is common to model random errors in a classical measurement by the normal
(Gaussian) distribution, because of the central limit theorem. In the quantum
theory, the analogous hypothesis is that the matrix elements of the error in an
observable are distributed normally. We obtain the probability distribution
this implies for the outcome of a measurement, exactly for the case of 2x2
matrices and in the steepest descent approximation in general. Due to the
phenomenon of `level repulsion', the probability distributions obtained are
quite different from the Gaussian.Comment: Based on talk at "Spacetime and Fundamental Interactions: Quantum
Aspects" A conference to honor A. P. Balachandran's 65th Birthda
Signatures of Random Matrix Theory in the Discrete Energy Spectra of Subnanosize Metallic Clusters
Lead clusters deposited on Si(111) substrates have been studied at low
temperatures using scanning tunneling microscopy and spectroscopy. The
current-voltage characteristics exhibit current peaks that are irregularly
spaced and varied in height. The statistics of the distribution of peak heights
and spacings are in agreement with random matrix theory for several clusters.
The distributions have also been studied as a function of cluster shape.Comment: 10 pages, 9 figures, to appear in Phys. Rev.
- …