31,156 research outputs found
Regional estimation of daily to annual regional evapotranspiration with MODIS data in the Yellow River Delta wetland
Evapotranspiration (ET) from the wetland of the Yellow River Delta (YRD) is one of the important components in the water cycle, which represents the water consumption by the plants and evaporation from the water and the non-vegetated surfaces. Reliable estimates of the total evapotranspiration from the wetland is useful information both for understanding the hydrological process and for water management to protect this natural environment. Due to the heterogeneity of the vegetation types and canopy density and of soil water content over the wetland (specifically over the natural reserve areas), it is difficult to estimate the regional evapotranspiration extrapolating measurements or calculations usually done locally for a specific land cover type. Remote sensing can provide observations of land surface conditions with high spatial and temporal resolution and coverage. In this study, a model based on the Energy Balance method was used to calculate daily evapotranspiration (ET) using instantaneous observations of land surface reflectance and temperature from MODIS when the data were available on clouds-free days. A time series analysis algorithm was then applied to generate a time series of daily ET over a year period by filling the gaps in the observation series due to clouds. A detailed vegetation classification map was used to help identifying areas of various wetland vegetation types in the YRD wetland. Such information was also used to improve the parameterizations in the energy balance model to improve the accuracy of ET estimates. This study showed that spatial variation of ET was significant over the same vegetation class at a given time and over different vegetation types in different seasons in the YRD wetlan
Summing Radiative Corrections to the Effective Potential
When one uses the Coleman-Weinberg renormalization condition, the effective
potential in the massless theory with O(N) symmetry is
completely determined by the renormalization group functions. It has been shown
how the order renormalization group function determine the sum of all
the N^{\mbox{\scriptsize p}}LL order contribution to to all orders in the
loop expansion. We discuss here how, in addition to fixing the
N^{\mbox{\scriptsize p}}LL contribution to , the order
renormalization group functions also can be used to determine portions of the
N^{\mbox{\scriptsize p+n}}LL contributions to . When these contributions
are summed to all orders, the singularity structure of \mcv is altered. An
alternate rearrangement of the contributions to in powers of ,
when the extremum condition is combined with the
renormalization group equation, show that either or is independent
of . This conclusion is supported by showing the LL, , NLL
contributions to become progressively less dependent on .Comment: 16 pages; added 2 figures and 2 tables; references revise
Critical behaviour of combinatorial search algorithms, and the unitary-propagation universality class
The probability P(alpha, N) that search algorithms for random Satisfiability
problems successfully find a solution is studied as a function of the ratio
alpha of constraints per variable and the number N of variables. P is shown to
be finite if alpha lies below an algorithm--dependent threshold alpha\_A, and
exponentially small in N above. The critical behaviour is universal for all
algorithms based on the widely-used unitary propagation rule: P[ (1 + epsilon)
alpha\_A, N] ~ exp[-N^(1/6) Phi(epsilon N^(1/3)) ]. Exponents are related to
the critical behaviour of random graphs, and the scaling function Phi is
exactly calculated through a mapping onto a diffusion-and-death problem.Comment: 7 pages; 3 figure
A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation
Targeting at the development of an accurate and efficient dose calculation
engine for online adaptive radiotherapy, we have implemented a finite size
pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This
new GPU-based dose engine is built on our previously published ultrafast FSPB
computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009].
Dosimetric evaluations against Monte Carlo dose calculations are conducted on
10 IMRT treatment plans (5 head-and-neck cases and 5 lung cases). For all
cases, there is improvement with the 3D-density correction over the
conventional FSPB algorithm and for most cases the improvement is significant.
Regarding the efficiency, because of the appropriate arrangement of memory
access and the usage of GPU intrinsic functions, the dose calculation for an
IMRT plan can be accomplished well within 1 second (except for one case) with
this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB
algorithm without 3D-density correction, this new algorithm, though slightly
sacrificing the computational efficiency (~5-15% lower), has significantly
improved the dose calculation accuracy, making it more suitable for online IMRT
replanning
Recommended from our members
Relationship Between Foveal Cone Structure and Visual Acuity Measured With Adaptive Optics Scanning Laser Ophthalmoscopy in Retinal Degeneration.
PurposeTo evaluate foveal function in patients with inherited retinal degenerations (IRD) by measuring visual acuity (VA) after correction of higher-order aberrations.MethodsAdaptive optics scanning laser ophthalmoscopy (AOSLO) was used to image cones in 4 healthy subjects and 15 patients with IRD. The 840-nm scanning laser delivered an "E" optotype to measure AOSLO-mediated VA (AOSLO-VA). Cone spacing was measured at the preferred retinal locus by two independent graders and the percentage of cones below the average density of 47 age-similar healthy subjects was computed. Cone spacing was correlated with best-corrected VA measured with the Early Treatment of Diabetic Retinopathy Study protocol (ETDRS-VA), AOSLO-VA, and foveal sensitivity.ResultsETDRS-VA significantly correlated with AOSLO-VA (ρ = 0.79, 95% confidence interval [CI] 0.5-0.9). Cone spacing correlated with AOSLO-VA (ρ = 0.54, 95% CI 0.02-0.7), and negatively correlated with ETDRS letters read (ρ = -0.64, 95% CI -0.8 to -0.2). AOSLO-VA remained ≥20/20 until cones decreased to 40.2% (CI 31.1-45.5) below normal. Similarly, ETDRS-VA remained ≥20/20 until cones were 42.0% (95% CI 36.5-46.1) below normal. Cone spacing z scores negatively correlated with foveal sensitivity (ρ = -0.79, 95% CI -0.9 to -0.4) and foveal sensitivity was ≥35 dB until cones were 43.1% (95% CI 39.3-46.6) below average.ConclusionsVA and foveal cone spacing were weakly correlated until cones were reduced by 40% to 43% below normal. The relationship suggests that VA is an insensitive measure of foveal cone survival; cone spacing may be a more sensitive measure of cone loss
Electron quantum interference in epitaxial antiferromagnetic NiO thin films
The electron reflectivity from NiO thin films grown on Ag(001) has been systematically studied as a function of film thickness and electron energy. A strong electron quantum interference effect was observed from the NiO film, which is used to derive the unoccupied band dispersion above the Fermi surface along the Γ-X direction using the phase accumulation model. The experimental bands agree well with first-principles calculations. A weaker electron quantum interference effect was also observed from the CoO film
Responses to Phytohormones, Mg Stress and Dehydration and Its Correlation with Stomatal Density in Bread Wheat
ERECTA is an ancient family of leucine-rich repeat receptor-like kinases (RLKs) that coordinate growth and development of plant. TaERECTA, one copy of the ERECTA homologs in wheat, was isolated from bread wheat Chinese Spring. The Ser/Thr kinase of TaERECTA was expressed in E. coli after IPTG induction and confirmed by immunoblot. TaERECTA showed higher expression in younger organs with rapid development, as well as great expression in younger spikes at booting stage. Under exogenous application of gibberellin (GA3) and abscisic acid (ABA), and Mg2+ stress, the expression of TaERECTA was largely suppressed, whereas under exogenous application of indole acetic acid (IAA) and brassinolide (BR), and dehydration stress, its expression was initially suppressed and then up-regulated. Natural variation was apparent in the relative expression of TaERECTA among 9 different bread wheat lines, and its expression level was negatively correlated with the stomatal density. These results suggested that TaERECTA could be exploitable for manipulating agronomical traits important through regulating stomata density, with potential implication for bread wheat improvement
- …
