125 research outputs found
Urban risk communication in Ahmedabad - India: between slum dwellers and the municipal corporation.
Since rapid urban growth forces poor households to settle in highly congested urban areas, slum dwellers are increasingly vulnerable due to a multiplicity of hazards rooted in the environment, nature, health, society and the urban economy. Hitherto, the understanding of urban risks and the vulnerability of inhabitants has been an underrepresented subject in urban planning. The different reasoning and rationales of slum dwellers, municipal authorities and other actors provide each with different perceptions of risks. This study focuses on the communication of urban risks between two slum communities and the Municipal Corporation of Ahmedabad by examining endeavours in slum improvement and more responsive urban governance. In using a conceptual framework that synthesises socio-cultural approaches to risk, communication theories and collaborative planning theory, the thesis points out the deficiencies and potentials of risk communication in long-term urban development planning. Currently urban risk management is not recognised as an integrated, cross-sectoral topic by the Municipal Corporation. Due to the structural fabric of the administration and the lack of capacity and guidance, the notion of risk is based on conventional approaches to disaster risk management with responsibilities spread across various departments. By contrast, slum dwellers have a much more integrated understanding of the micro-level risk conditions in which they live and work. The findings of this study suggest that a meaningful two-way communication process can only take place if the interaction of stakeholders is understood in terms of human relationships that go beyond techno-bureaucratic co-ordination and the prevalent notion of mono-directional communication. This concept of communication is underpinned by values such as trust, fairness, credibility and justice in interaction in the context of urban governance. The research approach and the findings suggest areas for improved policy making and further research. The outcome of the research especially contributes to a better understanding of urban risk situations in the social and cultural contexts of poor communities in India. Hence this investigation may be viewed as a potential basis for generating practical guidelines for mitigation policies and their links to urban governance
Polar Stratospheric Clouds Satellite Observations, Processes, and Role in Ozone Depletion
Polar stratospheric clouds (PSCs) play important roles in stratospheric ozone depletion during winter and spring at high latitudes (e.g., the Antarctic ozone hole). PSC particles provide sites for heterogeneous reactions that convert stable chlorine reservoir species to radicals that destroy ozone catalytically. PSCs also prolong ozone depletion by delaying chlorine deactivation through the removal of gas-phase HNO and HO by sedimentation of large nitric acid trihydrate (NAT) and ice particles. Contemporary observations by the spaceborne instruments Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), Microwave Limb Sounder (MLS), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) have provided an unprecedented polar vortex-wide climatological view of PSC occurrence and composition in both hemispheres. These data have spurred advances in our understanding of PSC formation and related dynamical processes, especially the firm evidence of widespread heterogeneous nucleation of both NAT and ice PSC particles, perhaps on nuclei of meteoritic origin. Heterogeneous chlorine activation appears to be well understood. Reaction coefficients on/in liquid droplets have been measured accurately, and while uncertainties remain for reactions on solid NAT and ice particles, they are considered relatively unimportant since under most conditions chlorine activation occurs on/in liquid droplets. There have been notable advances in the ability of chemical transport and chemistry-climate models to reproduce PSC temporal/spatial distributions and composition observed from space. Continued spaceborne PSC observations will facilitate further improvements in the representation of PSC processes in global models and enable more accurate projections of the evolution of polar ozone and the global ozone layer as climate changes
Validation of first chemistry mode retrieval results from the new limb-imaging FTS GLORIA with correlative MIPAS-STR observations
We report first chemistry mode retrieval results from the new airborne limb-imaging infrared FTS (Fourier transform spectrometer) GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) and comparisons with observations by the conventional airborne limb-scanning infrared FTS MIPAS-STR (Michelson Interferometer for Passive Atmospheric Sounding – STRatospheric aircraft). For GLORIA, the flights aboard the high-altitude research aircraft M55 Geophysica during the ESSenCe campaign (ESa Sounder Campaign 2011) were the very first in field deployment after several years of development. The simultaneous observations of GLORIA and MIPAS-STR during the flight on 16 December 2011 inside the polar vortex and under conditions of optically partially transparent polar stratospheric clouds (PSCs) provided us the first opportunity to compare the observations by two different infrared FTS generations directly. We validate the GLORIA results with MIPAS-STR based on the lower vertical resolution of MIPAS-STR and compare the vertical resolutions of the instruments derived from their averaging kernels. The retrieval results of temperature, HNO3, O3, H2O, CFC-11 and CFC-12 show reasonable agreement of GLORIA with MIPAS-STR and collocated in situ observations. For the horizontally binned hyperspectral limb images, the GLORIA sampling outnumbered the horizontal cross-track sampling of MIPAS-STR by up to 1 order of magnitude. Depending on the target parameter, typical vertical resolutions of 0.5 to 2.0 km were obtained for GLORIA and are typically a factor of 2 to 4 better compared to MIPAS-STR. While the improvement of the performance, characterization and data processing of GLORIA are the subject of ongoing work, the presented first results already demonstrate the considerable gain in sampling and vertical resolution achieved with GLORIA
Validation of first chemistry mode retrieval results from new limb-imaging FTS GLORIA with correlative MIPAS-STR observations
We report first chemistry mode retrieval results from the new airborne limb-imaging infrared FTS (Fourier transform spectrometer) GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) and comparisons with observations by the conventional airborne limb-scanning infrared FTS MIPAS-STR (Michelson Interferometer for Passive Atmospheric Sounding - STRatospheric aircraft). For GLORIA, the flights aboard the high-altitude research aircraft M55 Geophysica during the ESSenCe campaign (ESa Sounder Campaign 2011) were the very first in field deployment after several years of development. The simultaneous observations of GLORIA and MIPAS-STR during the flight on 16 December 2011 inside the polar vortex and under conditions of optically partially transparent polar stratospheric clouds (PSCs) provided us the first opportunity to compare the observations by two different infrared FTS generations directly. We validate the GLORIA results with MIPAS-STR based on the lower vertical resolution of MIPAS-STR and compare the vertical resolutions of the instruments derived from their averaging kernels. The retrieval results of temperature, HNO3, O3, H2O, CFC-11 and CFC-12 show reasonable agreement of GLORIA with MIPAS-STR and collocated in situ observations. For the horizontally binned hyperspectral limb images, the GLORIA sampling outnumbered the horizontal cross-track sampling of MIPAS-STR by up to 1 order of magnitude. Depending on the target parameter, typical vertical resolutions of 0.5 to 2.0 km were obtained for GLORIA and are typically a factor of 2 to 4 better compared to MIPAS-STR. While the improvement of the performance, characterization and data processing of GLORIA are the subject of ongoing work, the presented first results already demonstrate the considerable gain in sampling and vertical resolution achieved with GLORIA
MIPAS IMK/IAA CFC-11 (CCl₃F) and CFC-12 (CCl₂F₂) measurements: accuracy, precision and long-term stability
Profiles of CFC-11 (CCl3F) and CFC-12 (CCl2F2) of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) abord the European satellite Envisat have been retrieved from versions MIPAS/4.61–MIPAS/4.62 and MIPAS/5.02–MIPAS/5.06 level-1b data using the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK) and Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Astrofísica de Andalucía (IAA). These profiles have been compared to measurements taken by the balloon borne Cryosampler, Mark IV (MkIV) and MIPAS-Balloon (MIPAS-B), the airborne MIPAS stratospheric aircraft (MIPAS-STR), the satellite borne Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) and the High Resolution Dynamic Limb Sounder (HIRDLS) as well as the ground based Halocarbon and other Atmospheric Trace Species (HATS) network for the reduced spectral resolution period (RR: January 2005–April 2012) of MIPAS Envisat. ACE-FTS, MkIV and HATS also provide measurements during the high spectral resolution period (FR: July 2002–March 2004) and were used to validate MIPAS Envisat CFC-11 and CFC-12 products during that time, as well as ILAS-II profiles. In general, we find that MIPAS Envisat shows slightly higher values for CFC-11 at the lower end of the profiles (below ~ 15 km) and in a comparison of HATS ground-based data and MIPAS Envisat measurements at 3 km below the tropopause. Differences range from approximately 10–50 pptv (~ 5–20 %) during the RR period. In general, differences are slightly smaller for the FR period. An indication of a slight high-bias at the lower end of the profile exists for CFC-12 as well, but this bias is far less pronounced than for CFC-11, so that differences at the lower end of the profile (below ~ 15 km) and in the comparison of HATS and MIPAS Envisat measurements taken at 3 km below the tropopause mainly stay within 10–50 pptv (~ 2–10 %) for the RR and the FR period. Above approximately 15 km, most comparisons are close to excellent, apart from ILAS-II, which shows large differences above ~ 17 km. Overall, percentage differences are usually smaller for CFC-12 than for CFC-11. For both species – CFC-11 and CFC-12 – we find that differences at the lower end of the profile tend to be larger at higher latitudes than in tropical and subtropical regions. In addition, MIPAS Envisat profiles have a maximum in the mixing ratio around the tropopause, which is most obvious in tropical mean profiles. Estimated measurement noise alone can, in most cases, not explain the standard deviation of the differences. This is attributed to error components not considered in the error estimate and also to natural variability which always plays a role when the compared instruments do not measure exactly the same air mass. Investigations concerning the temporal stability show very small negative drifts in MIPAS Envisat CFC-11 measurements. These drifts vary between ~ 1–3 % decade−1. For CFC-12, the drifts are also negative and close to zero up to ~ 30 km. Above that altitude larger drifts of up to ~ 50 % decade−1 appear which are negative up to ~ 35 km and positive, but of a similar magnitude, above
Validation of first chemistry mode retrieval results from new limb-imaging FTS GLORIA with correlative MIPAS-STR observations
We report first chemistry mode retrieval results from the new airborne limb-imaging infrared FTS (Fourier transform spectrometer) GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) and comparisons with observations by the conventional airborne limb-scanning infrared FTS MIPAS-STR (Michelson Interferometer for Passive Atmospheric Sounding - STRatospheric aircraft). For GLORIA, the flights aboard the high-altitude research aircraft M55 Geophysica during the ESSenCe campaign (ESa Sounder Campaign 2011) were the very first in field deployment after several years of development. The simultaneous observations of GLORIA and MIPAS-STR during the flight on 16 December 2011 inside the polar vortex and under conditions of optically partially transparent polar stratospheric clouds (PSCs) provided us the first opportunity to compare the observations by two different infrared FTS generations directly. We validate the GLORIA results with MIPAS-STR based on the lower vertical resolution of MIPAS-STR and compare the vertical resolutions of the instruments derived from their averaging kernels. The retrieval results of temperature, HNO3, O3, H2O, CFC-11 and CFC-12 show reasonable agreement of GLORIA with MIPAS-STR and collocated in situ observations. For the horizontally binned hyperspectral limb images, the GLORIA sampling outnumbered the horizontal cross-track sampling of MIPAS-STR by up to 1 order of magnitude. Depending on the target parameter, typical vertical resolutions of 0.5 to 2.0 km were obtained for GLORIA and are typically a factor of 2 to 4 better compared to MIPAS-STR. While the improvement of the performance, characterization and data processing of GLORIA are the subject of ongoing work, the presented first results already demonstrate the considerable gain in sampling and vertical resolution achieved with GLORIA
Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions
Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes
Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions : (RECONCILE) ; activities and results
The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability
The Permafrost-Agroecosystem Action Group: first results and future goals
Permafrost-agroecosystems encompass northern social-ecological systems which include both
cultivation of arable permafrost-affected soils, and animal husbandry practices. These heterogeneous
food and cultural systems are being affected by a warming climate. Examples include increasing
opportunities for growing crops through longer growing seasons, as well as impacts on animals’
local and long-distance migratory movements and their food sources. Furthermore, climate
change driven permafrost thaw and thaw accelerated by land clearance is rapidly changing the
biophysical and socioeconomic aspects of these systems. Therefore, an international collaboration
encompassing experts from North America, Europe and Asia is working on increasing our
understanding of permafrost-agroecosystems and contributing to the adaptation, resilience, and
sustainability strategy of these rapidly evolving systems.
The International Permafrost Association Permafrost-Agroecosystem Action Group is composed of
~30 members from 7 countries. The objectives of our action group are to share knowledge and
build networking capacities through meetings and webinar presentation as well as to collaborate
on publications and produce the first geospatial dataset of permafrost-agroecosystems. Our poster
presentation provides an overview of the group’s activities including providing case studies from a
range of high-latitude and high-altitude areas as part of a group manuscript in preparation and an
update on our mapping activities
- …