40 research outputs found

    Clinical and radiological evaluation of Trabecular Metal and the Smith–Robinson technique in anterior cervical fusion for degenerative disease: a prospective, randomized, controlled study with 2-year follow-up

    Get PDF
    A prospective, randomized, controlled study was carried out to compare the radiological and clinical outcomes after anterior cervical decompression and fusion (ACDF) with Trabecular Metalℱ (TM) to the traditional Smith–Robinson (SR) procedure with autograft. The clinical results of cervical fusion with autograft from the iliac crest are typically satisfactory, but implications from the donor site are frequently reported. Alternative materials for cervical body interfusion have shown lower fusion rates. Trabecular Metal is a porous tantalum biomaterial with structure and mechanical properties similar to that of trabecular bone and with proven osteoconductivity. As much as 80 consecutive patients planned for ACDF were randomized for fusion with either TM or tricortical autograft from the iliac crest (SR) after discectomy and decompression. Digitized plain radiographic images of 78 (98%) patients were obtained preoperatively and at 2-year follow-up and were subsequently evaluated by two senior radiologists. Fusion/non-fusion was classified by visual evaluation of the A–P and lateral views in forced flexion/extension of the cervical spine and by measuring the mobility between the fused vertebrae. MRI of 20 TM cases at 2 years was successfully used to assess the decompression of the neural structures, but was not helpful in determining fusion/non-fusion. Pain intensity in the neck, arms and pelvis/hip were rated by patients on a visual analog scale (VAS) and neck function was rated using the Neck Disability Index (NDI) the day before surgery and 4, 12 and 24 months postoperatively. Follow-ups at 12 and 24 months were performed by an unbiased observer, when patients also assessed their global outcome. Fusion rate in the SR group was 92%, and in the TM group 69% (P < 0.05). The accuracy of the measurements was calculated to be 2.4°. Operating time was shorter for fusion with TM compared with autograft; mean times were 100 min (SD 18) and 123 min (SD 23), respectively (P = 0.001). The patients’ global assessments of their neck and arm symptoms 2 years postoperatively for the TM group were rated as 79% much better or better after fusion with TM and 75% using autograft. Pain scores and NDI scores were significantly improved in both groups when compared with baseline at all follow-ups, except for neck pain at 1 year for the TM group. There was no statistically significant difference in clinical outcomes between fusion techniques or between patients who appeared radiologically fused or non-fused. There was no difference in pelvic/hip pain between patients operated on with or without autograft. In our study, Trabecular Metal showed a lower fusion rate than the Smith–Robinson technique with autograft after single-level anterior cervical fusion without plating. There was no difference in clinical outcomes between the groups. The operative time was shorter with Trabecular Metal implants

    Using proximity extension proteomics assay to discover novel biomarkers associated with circulating leptin levels in patients with type 2 diabetes

    No full text
    We aimed to discover novel associations between leptin and circulating proteins which could link leptin to the development of cardiovascular disease in patients with type 2 diabetes (T2DM). In a discovery phase, we investigated associations between 88 plasma proteins, assessed with a proximity extension assay, and plasma leptin in a cohort of middle-aged patients with T2DM. Associations passing the significance threshold of a False discovery rate of 5% (corresponding to p&lt;0.0017) were replicated in patients with T2DM in an independent cohort. We also investigated if proteins mediated the longitudinal association between plasma leptin and the incidence of major cardiovascular events (MACE). One protein, adipocyte fatty acid binding protein (A-FABP), was significantly associated with leptin in both the discovery phase [95% CI (0.06, 0.17) p=0.00002] and the replication cohort [95% CI (0.12, 0.39) p=0.0003]. Multiplicative interaction analyses in the two cohorts suggest a stronger association between A-FABP and leptin in men than in women. In longitudinal analyses, the association between leptin and MACE was slightly attenuated after adding A-FABP to the multivariate model. Our analysis identified a consistent association between leptin and A-FABP in two independent cohorts of patients with T2DM, particularly in men.Trial registration: ClinicalTrials.gov identifier NCT 01049737

    Three-dimensional pelvic incidence is much higher in (thoraco)lumbar scoliosis than in controls

    No full text
    Purpose The pelvic incidence (PI) is used to describe the sagittal spino-pelvic alignment. In previous studies, radiographs were used, leading to less accuracy in establishing the three-dimensional (3D) spino-pelvic parameters. The purpose of this study is to analyze the differences in the 3D sagittal spino-pelvic alignment in adolescent idiopathic scoliosis (AIS) subjects and non-scoliotic controls. Methods Thirty-seven female AIS patients that underwent preoperative supine low-dose computed tomography imaging of the spine, hips and pelvis as part of their general workup were included and compared to 44 non-scoliotic age-matched female controls. A previously validated computerized method was used to measure the PI in 3D, as the angle between the line orthogonal to the inclination of the sacral endplate and the line connecting the center of the sacral endplate with the hip axis. Results The PI was on average 46.8° ± 12.4° in AIS patients and 41.3° ± 11.4° in controls (p = 0.025), with a higher PI in Lenke type 5 curves (50.6° ± 16.2°) as compared to controls (p = 0.042), whereas the Lenke type 1 curves (45.9° ± 12.2°) did not differ from controls (p = 0.141). Conclusion Lenke type 5 curves show a significantly higher PI than controls, whereas the Lenke type 1 curves did not differ from controls. This suggests a role of pelvic morphology and spino-pelvic alignment in the pathogenesis of idiopathic scoliosis. Further longitudinal studies should explore the exact role of the PI in the initiation and progression of different AIS types.Funding agencies: K2M; Alexandre Suerman Md/PhD grant; Swedish Society of Spinal surgeons</p

    Anterior lengthening in scoliosis occurs only in the disc and is similar in different types of scoliosis

    No full text
    BACKGROUND CONTEXT: Relative anterior spinal overgrowth was proposed as a generalized growth disturbance and a potential initiator of adolescent idiopathic scoliosis (AIS). However, anterior lengthening has also been observed in neuromuscular (NM) scoliosis and was shown to be restricted to the apical areas and located in the intervertebral discs, not in the bone. This suggests that relative anterior spinal overgrowth does not rightfully describe anterior lengthening in scoliosis, as it seems not a generalized active growth phenomenon, nor specific to AIS. PURPOSE: To determine if compensatory curves in congenital scoliosis exhibit a mechanism of anterior lengthening without changes in the vertebral body, similar to curves in AIS and NM scoliosis. STUDY DESIGN/SETTING: Cross-sectional. PATIENT SAMPLE: CT-scans were included of patients in whom a short segment congenital malformation had led to a long thoracic compensatory curve without bony abnormality. Based on data of other scoliosis types, the calculated required sample size was n=12 to detect equivalence of vertebral bodies as compared with nonscoliotic controls. Out of 143 congenital scoliosis patients, 18 fit the criteria and compared with 30 nonscoliotic controls, 30 AIS and 30 NM scoliosis patients. OUTCOME MEASURES: The anterior-posterior length discrepancy (AP%) of the total curve and for vertebral bodies and intervertebral discs separately. METHODS: Of each vertebral body and intervertebral disc in the compensatory curve, the anterior and posterior length was measured on CT-scans in the exact mid-sagittal plane, corrected for deformity in all three planes. The AP% was calculated for the total compensatory curve (Cobb-to-Cobb) and for the vertebral bodies and the intervertebral discs separately. Positive AP% indicated that the anterior side was longer than the posterior side. RESULTS: The total AP% of the compensatory curve in congenital scoliosis showed lordosis (+1.8%) that differed from the kyphosis in nonscoliotic controls (-3.0%; p<.001) and was comparable to the major curve in AIS (+1.2%) and NM scoliosis (+0.5%). This anterior lengthening was not located in the bone; the vertebral body AP% showed kyphosis (-3.2%), similar to nonscoliotic controls (-3.4%) as well as AIS (-2.5%) and NM scoliosis (-4.5%; p=1.000). However, the disc AP% showed lordosis (+24.3%), which sharply contrasts to the kyphotic discs of controls (-1.5%; p<.001), but was similar to AIS (+17.5%) and NM scoliosis (+20.5%). CONCLUSIONS: The current study on compensatory curves in congenital scoliosis confirms that anterior lengthening is part of the three-dimensional deformity in different types of scoliosis and is exclusively located in the intervertebral discs. The bony vertebral bodies maintain their kyphotic shape, which indicates that there is no active anterior bony overgrowth. Anterior lengthening appears to be a passive result of any scoliotic deformity, rather than being related to the specific cause of AIS

    Anterior Spinal Overgrowth is the Result of the Scoliotic Mechanism and is Located in the Disc

    No full text
    STUDY DESIGN: Cross-sectional. OBJECTIVE: To investigate the presence and magnitude of anterior spinal overgrowth in neuromuscular scoliosis and compare this to the same measurements in idiopathic scoliosis and healthy spines. SUMMARY OF BACKGROUND DATA: Anterior spinal overgrowth has been described as a potential driver for the onset and progression of adolescent idiopathic scoliosis (AIS). Whether this anterior overgrowth is specific for AIS or also present in non-idiopathic scoliosis has not been reported. METHODS: Supine CT scans of thirty AIS patients (thoracic Cobb 21-81°), thirty neuromuscular (NM) scoliotic patients (thoracic Cobb 19-101°) and thirty non-scoliotic controls were used. The difference in length in per cents between the anterior and posterior side (((ΔA-P)/P)*100%, abbreviated to A-P%) of each vertebral body and intervertebral disc, and between the anterior side of the spine and the spinal canal (A-C%) were determined. RESULTS: The A-P% of the thoracic curves did not differ between the AIS (+1.2 ± 2.2%) and NM patients (+0.9 ± 4.1%, P = 0.663), both did differ, however, from the same measurements in controls (-3.0 ± 1.6%; P < 0.001) and correlated linearly with the Cobb angle (AIS r = 0.678, NM r = 0.687). Additional anterior length was caused by anterior elongation of the discs (AIS: A-P% disc +17.5 ± 12.7% versus A-P% body -2.5 ± 2.6%; P < 0.001, NM: A-P% disc +19.1 ± 18.0% versus A-P% body -3.5 ± 5.1%; P < 0.001). The A-C% T1-S1 in AIS and NM patients were similar (+7.9 ± 1.8% and +8.7 ± 4.0%, P = 0.273), but differed from the controls (+4.2 ± 3.3%; P < 0.001). CONCLUSIONS: So called anterior overgrowth has been postulated as a possible cause for idiopathic scoliosis, but apparently it occurs in scoliosis with a known origin as well. This suggests that it is part of a more generalized scoliotic mechanism, rather than its cause. The fact that the intervertebral discs contribute more to this increased anterior length than the vertebral bodies suggests an adaptation to altered loading, rather than a primary growth disturbance

    Anterior Spinal Overgrowth is the Result of the Scoliotic Mechanism and is Located in the Disc

    No full text
    STUDY DESIGN: Cross-sectional. OBJECTIVE: To investigate the presence and magnitude of anterior spinal overgrowth in neuromuscular scoliosis and compare this to the same measurements in idiopathic scoliosis and healthy spines. SUMMARY OF BACKGROUND DATA: Anterior spinal overgrowth has been described as a potential driver for the onset and progression of adolescent idiopathic scoliosis (AIS). Whether this anterior overgrowth is specific for AIS or also present in non-idiopathic scoliosis has not been reported. METHODS: Supine CT scans of thirty AIS patients (thoracic Cobb 21-81°), thirty neuromuscular (NM) scoliotic patients (thoracic Cobb 19-101°) and thirty non-scoliotic controls were used. The difference in length in per cents between the anterior and posterior side (((ΔA-P)/P)*100%, abbreviated to A-P%) of each vertebral body and intervertebral disc, and between the anterior side of the spine and the spinal canal (A-C%) were determined. RESULTS: The A-P% of the thoracic curves did not differ between the AIS (+1.2 ± 2.2%) and NM patients (+0.9 ± 4.1%, P = 0.663), both did differ, however, from the same measurements in controls (-3.0 ± 1.6%; P < 0.001) and correlated linearly with the Cobb angle (AIS r = 0.678, NM r = 0.687). Additional anterior length was caused by anterior elongation of the discs (AIS: A-P% disc +17.5 ± 12.7% versus A-P% body -2.5 ± 2.6%; P < 0.001, NM: A-P% disc +19.1 ± 18.0% versus A-P% body -3.5 ± 5.1%; P < 0.001). The A-C% T1-S1 in AIS and NM patients were similar (+7.9 ± 1.8% and +8.7 ± 4.0%, P = 0.273), but differed from the controls (+4.2 ± 3.3%; P < 0.001). CONCLUSIONS: So called anterior overgrowth has been postulated as a possible cause for idiopathic scoliosis, but apparently it occurs in scoliosis with a known origin as well. This suggests that it is part of a more generalized scoliotic mechanism, rather than its cause. The fact that the intervertebral discs contribute more to this increased anterior length than the vertebral bodies suggests an adaptation to altered loading, rather than a primary growth disturbance

    Surgical Outcomes of Anterior Versus Posterior Fusion in Lenke Type 1 Adolescent Idiopathic Scoliosis

    No full text
    STUDY DESIGN: Retrospective study. OBJECTIVE: To describe surgical results in two and three dimensions and patient-reported outcomes of scoliosis treatment for Lenke type 1 idiopathic curves with an open anterior or posterior approach. SUMMARY OF BACKGROUND DATA: Different surgical techniques have been described to prevent curve progression and to restore spinal alignment in idiopathic scoliosis. The spine can be accessed via an anterior or a posterior approach. However, the surgical outcomes, especially in three dimensions, for different surgical approaches remain unclear. METHODS: Cohorts of Lenke curve type 1 idiopathic scoliosis patients, after anterior or posterior spinal fusion were recruited, to measure curve characteristics on conventional radiographs, before and after surgery and after 2 years follow-up, whereas the vertebral axial rotation, true mid-sagittal anterior-posterior height ratio of individual structures, and spinal height differences were measured on 3D reconstructions of the pre- and postoperative supine low-dose computed tomography (CT) scans. Additionally, the intraoperative parameters were described and the patients completed the Scoliosis Research Society outcomes and the 3-level version of EuroQol Group questionnaires postoperatively. RESULTS: Fifty-three patients with Lenke curve type 1 idiopathic scoliosis (26 in the anterior cohort and 27 in the posterior cohort) were analyzed. Fewer vertebrae were instrumented in the anterior cohort compared with the posterior cohort (P < 0.001), with less surgery time and lower intraoperative blood loss (P < 0.001). The Cobb angle correction of the primary thoracic curve directly after surgery was 57 ± 12% in the anterior cohort and 73 ± 12% in the posterior cohort (P < 0.001) and 55 ± 13% and 66 ± 12% (P = 0.001) at 2 years follow-up. Postoperative 3D alignment restoration and questionnaires showed no significant differences between the cohorts. CONCLUSION: This study suggests that Lenke type 1 curves can be effectively managed surgically with either an open anterior or posterior approach. Each approach, however, has specific advantages and challenges, as described in this study, which must be considered before treating each patient. LEVEL OF EVIDENCE: 3

    Surgical Outcomes of Anterior Versus Posterior Fusion in Lenke Type 1 Adolescent Idiopathic Scoliosis

    No full text
    STUDY DESIGN: Retrospective study. OBJECTIVE: To describe surgical results in two and three dimensions and patient-reported outcomes of scoliosis treatment for Lenke type 1 idiopathic curves with an open anterior or posterior approach. SUMMARY OF BACKGROUND DATA: Different surgical techniques have been described to prevent curve progression and to restore spinal alignment in idiopathic scoliosis. The spine can be accessed via an anterior or a posterior approach. However, the surgical outcomes, especially in three dimensions, for different surgical approaches remain unclear. METHODS: Cohorts of Lenke curve type 1 idiopathic scoliosis patients, after anterior or posterior spinal fusion were recruited, to measure curve characteristics on conventional radiographs, before and after surgery and after 2 years follow-up, whereas the vertebral axial rotation, true mid-sagittal anterior-posterior height ratio of individual structures, and spinal height differences were measured on 3D reconstructions of the pre- and postoperative supine low-dose computed tomography (CT) scans. Additionally, the intraoperative parameters were described and the patients completed the Scoliosis Research Society outcomes and the 3-level version of EuroQol Group questionnaires postoperatively. RESULTS: Fifty-three patients with Lenke curve type 1 idiopathic scoliosis (26 in the anterior cohort and 27 in the posterior cohort) were analyzed. Fewer vertebrae were instrumented in the anterior cohort compared with the posterior cohort (P < 0.001), with less surgery time and lower intraoperative blood loss (P < 0.001). The Cobb angle correction of the primary thoracic curve directly after surgery was 57 ± 12% in the anterior cohort and 73 ± 12% in the posterior cohort (P < 0.001) and 55 ± 13% and 66 ± 12% (P = 0.001) at 2 years follow-up. Postoperative 3D alignment restoration and questionnaires showed no significant differences between the cohorts. CONCLUSION: This study suggests that Lenke type 1 curves can be effectively managed surgically with either an open anterior or posterior approach. Each approach, however, has specific advantages and challenges, as described in this study, which must be considered before treating each patient.3
    corecore