14 research outputs found

    Intrathecal Injection of Spironolactone Attenuates Radicular Pain by Inhibition of Spinal Microglia Activation in a Rat Model

    Get PDF
    Microglia might play an important role in nociceptive processing and hyperalgesia by neuroinflammatory process. Mineralocorticoid receptor (MR) expressed on microglia might play a central role in the modulation of microglia activity. However the roles of microglia and MR in radicular pain were not well understood. This study sought to investigate whether selective MR antagonist spironolactone develop antinociceptive effects on radicular pain by inhibition neuroinflammation induced by spinal microglia activation.Radicular pain was produced by chronic compression of the dorsal root ganglia with SURGIFLO™. The expression of microglia, interleukin beta (IL-1β), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), NR1 subunit of the NMDA receptor (t-NR1), and NR1 subunit phosphorylated at Ser896 (p-NR1) were also markedly up-regulated. Intrathecal injection of spironolactone significantly attenuated pain behaviors as well as the expression of microglia, IL-1β, TNF-α, t-NR1, and p-NR1, whereas the production of IL-6 wasn't affected.These results suggest that intrathecal delivery spironolactone has therapeutic effects on radicular pain in rats. Decreasing the activation of glial cells, the production of proinflammatory cytokines and down-regulating the expression and phosphorylation of NMDA receptors in the spinal dorsal horn and dorsal root ganglia are the main mechanisms contributing to its beneficial effects

    Spinal Astrocytic Activation Is Involved in a Virally-Induced Rat Model of Neuropathic Pain

    Get PDF
    Postherpetic neuralgia (PHN), the most common complication of herpes zoster (HZ), plays a major role in decreased life quality of HZ patients. However, the neural mechanisms underlying PHN remain unclear. Here, using a PHN rat model at 2 weeks after varicella zoster virus infection, we found that spinal astrocytes were dramatically activated. The mechanical allodynia and spinal central sensitization were significantly attenuated by intrathecally injected L-α-aminoadipate (astrocytic specific inhibitor) whereas minocycline (microglial specific inhibitor) had no effect, which indicated that spinal astrocyte but not microglia contributed to the chronic pain in PHN rat. Further study was taken to investigate the molecular mechanism of astrocyte-incudced allodynia in PHN rat at post-infection 2 weeks. Results showed that nitric oxide (NO) produced by inducible nitric oxide synthase mediated the development of spinal astrocytic activation, and activated astrocytes dramatically increased interleukin-1β expression which induced N-methyl-D-aspartic acid receptor (NMDAR) phosphorylation in spinal dorsal horn neurons to strengthen pain transmission. Taken together, these results suggest that spinal activated astrocytes may be one of the most important factors in the pathophysiology of PHN and “NO-Astrocyte-Cytokine-NMDAR-Neuron” pathway may be the detailed neural mechanisms underlying PHN. Thus, inhibiting spinal astrocytic activation may represent a novel therapeutic strategy for clinical management of PHN

    Effect of spinal cord stimulation in an animal model of neuropathic pain relates to degree of tactile "allodynia".

    No full text
    Spinal cord stimulation (SCS) is an established treatment for chronic neuropathic pain. However, in recent studies conflicting results regarding the effect of SCS were noted in a selected group of patients suffering from complex regional pain syndrome and mechanical allodynia. In the present study we investigated the pain relieving effect of SCS in a rat experimental model of neuropathic pain as related to the severity of mechanical allodynia. Adult male rats (n=45) were submitted to a unilateral sciatic nerve ligation. The level of allodynia was tested using the withdrawal response to tactile stimuli with the von Frey test. A portion of these rats developed marked tactile hypersensitivity in the nerve-lesioned paw (von Frey test), similar to "tactile allodynia" observed after nerve injury in humans. Prior to SCS treatment the rats were subdivided into three groups based on the level of allodynia: mild, moderate and severe. All allodynic rats were treated with SCS (n=27) for 30 min (f=50 Hz; pulse width 0.2 ms and stimulation at 2/3 of motor threshold) at 16 days post-injury. Our data demonstrate a differential effect of SCS related to the severity of the mechanical allodynia. SCS leads to a faster and better pain relief in mildly allodynic rats as compared with the more severely allodynic rats. Thus, we suggest that the selection and subdivision of patient groups similar to those defined in our experimental setting (mild, moderate and severe allodynic) may provide better pre-treatment prediction of possible therapeutic benefits of SCS
    corecore