23 research outputs found

    Lesinurad in combination with allopurinol: a randomised, double-blind, placebo-controlled study in patients with gout with inadequate response to standard of care (the multinational CLEAR 2 study).

    Get PDF
    Determine the efficacy and safety of daily lesinurad (200 or 400 mg orally) added to allopurinol in patients with serum uric acid (sUA) above target in a 12-month, randomised, phase III trial. Patients on allopurinol ≥300 mg (≥200 mg in moderate renal impairment) had sUA level of ≥6.5 mg/dL (≥387 µmol/L) at screening and two or more gout flares in the prior year. Primary end point was the proportion of patients achieving sUA level of <6.0 mg/dL (<357 µmol/L) (month 6). Key secondary end points were mean gout flare rate requiring treatment (months 7 through 12) and proportions of patients with complete resolution of one or more target tophi (month 12). Safety assessments included adverse events and laboratory data. Patients (n=610) were predominantly male, with mean (±SD) age 51.2±10.90 years, gout duration 11.5±9.26 years and baseline sUA of 6.9±1.2 mg/dL (410±71 µmol/L). Lesinurad at 200 and 400 mg doses, added to allopurinol, significantly increased proportions of patients achieving sUA target versus allopurinol-alone therapy by month 6 (55.4%, 66.5% and 23.3%, respectively, p<0.0001 both lesinurad+allopurinol groups). In key secondary end points, there were no statistically significant treatment-group differences favouring lesinurad. Lesinurad was generally well tolerated; the 200 mg dose had a safety profile comparable with allopurinol-alone therapy. Renal-related adverse events occurred in 5.9% of lesinurad 200 mg+allopurinol, 15.0% of lesinurad 400 mg+allopurinol and 4.9% of allopurinol-alone groups, with serum creatinine elevation of ≥1.5× baseline in 5.9%, 15.0% and 3.4%, respectively. Serious treatment-emergent adverse events occurred in 4.4% of lesinurad 200 mg+allopurinol, in 9.5% of lesinurad 400 mg+allopurinol and in 3.9% of allopurinol-alone groups, respectively. Lesinurad added to allopurinol demonstrated superior sUA lowering versus allopurinol-alone therapy and lesinurad 200 mg was generally well tolerated in patients with gout warranting additional therapy. NCT01493531

    TIMP-2 Fusion Protein with Human Serum Albumin Potentiates Anti-Angiogenesis-Mediated Inhibition of Tumor Growth by Suppressing MMP-2 Expression

    Get PDF
    TIMP-2 protein has been intensively studied as a promising anticancer candidate agent, but the in vivo mechanism underlying its anticancer effect has not been clearly elucidated by previous works. In this study, we investigated the mechanism underlying the anti-tumor effects of a TIMP-2 fusion protein conjugated with human serum albumin (HSA/TIMP-2). Systemic administration of HSA/TIMP-2 effectively inhibited tumor growth at a minimum effective dose of 60 mg/kg. The suppressive effect of HSA/TIMP-2 was accompanied by a marked reduction of in vivo vascularization. The anti-angiogenic activity of HSA/TIMP-2 was directly confirmed by CAM assays. In HSA/TIMP-2-treated tumor tissues, MMP-2 expression was profoundly decreased without a change in MT1-MMP expression of PECAM-1-positive cells. MMP-2 mRNA was also decreased by HSA/TIMP-2 treatment of human umbilical vein endothelial cells. Zymographic analysis showed that HSA/TIMP-2 substantially decreased extracellular pro-MMP-2 activity (94–99% reduction) and moderately decreased active MMP-2 activity (10–24% reduction), suggesting MT1-MMP-independent MMP-2 modulation. Furthermore, HSA/TIMP-2 had no effect on in vitro active MMP-2 activity and in vivo MMP-2 activity. These studies show that HSA/TIMP-2 potentiates anti-angiogenic activity by modulating MMP-2 expression, but not MMP-2 activity, to subsequently suppress tumor growth, suggesting an important role for MMP-2 expression rather than MMP-2 activity in anti-angiogenesis

    Pharmacokinetics, pharmacodynamics, and safety of lesinurad, a selective uric acid reabsorption inhibitor, in healthy adult males

    No full text
    Zancong Shen, Colin Rowlings, Brad Kerr, Vijay Hingorani, Kimberly Manhard, Barry Quart, Li-Tain Yeh, Chris Storgard Ardea Biosciences, Inc. (a member of the AstraZeneca group), San Diego, CA, USA Abstract: Lesinurad is a selective uric acid reabsorption inhibitor under investigation for the treatment of gout. Single and multiple ascending dose studies were conducted to evaluate pharmacokinetics, pharmacodynamics, and safety of lesinurad in healthy males. Lesinurad was administered as an oral solution between 5 mg and 600 mg (single ascending dose; N=34) and as an oral solution or immediate-release capsules once daily (qday) between 100 mg and 400 mg for 10 days under fasted or fed condition (multiple ascending dose; N=32). Following single doses of lesinurad solution, absorption was rapid and exposure (maximum observed plasma concentration and area under the plasma concentration–time curve) increased in a dose-proportional manner. Following multiple qday doses, there was no apparent accumulation of lesinurad. Urinary excretion of unchanged lesinurad was generally between 30% and 40% of dose. Increases in urinary excretion of uric acid and reductions in serum uric acid correlated with dose. Following 400 mg qday dosing, serum uric acid reduction was 35% at 24 hours post-dose, supporting qday dosing. A relative bioavailability study in healthy males (N=8) indicated a nearly identical pharmacokinetic profile following dosing of tablets or capsules. Lesinurad was generally safe and well tolerated. Keywords: urinary excretion, urate lowering, URAT1, single and multiple doses, food effect, clearance&nbsp

    Are beta-amino acids gamma-turn mimetics? Exploring a new design principle for bioactive cyclopeptides

    No full text
    Schumann F, Müller A, Koksch M, Müller G, Sewald N. Are beta-amino acids gamma-turn mimetics? Exploring a new design principle for bioactive cyclopeptides. Journal of the American Chemical Society. 2000;122(48):12009-12010

    Microcomputed Tomography Characterization of Neovascularization in Bone Tissue Engineering Applications

    No full text
    Vasculogenesis and angiogenesis have been studied for decades using numerous in vitro and in vivo systems, fulfilling the need to elucidate the mechanisms involved in these processes and to test potential therapeutic agents that inhibit or promote neovascularization. Bone tissue engineering in particular has benefited from the application of proangiogenic strategies, considering the need for an adequate vascular supply during healing and the challenges associated with the vascularization of scaffolds implanted in vivo. Conventional methods of assessing the in vivo angiogenic response to tissue-engineered constructs tend to rely on a two-dimensional assessment of microvessel density within representative histological sections without elaboration of the true vascular tree. The introduction of microcomputed tomography (micro-CT) has recently allowed investigators to obtain a diverse range of high-resolution, three-dimensional characterization of structures, including renal, coronary, and hepatic vascular networks, as well as bone formation within healing defects. To date, few studies have utilized micro-CT to study the vascular response to an implanted tissue engineering scaffold. In this paper, conventional in vitro and in vivo models for studying angiogenesis will be discussed, followed by recent developments in the use of micro-CT for vessel imaging in bone tissue engineering research. A new study demonstrating the potential of contrast-enhanced micro-CT for the evaluation of in vivo neovascularization in bony defects is described, which offers significant potential in the evaluation of bone tissue engineering constructs

    A role for angiogenesis in rheumatoid arthritis

    No full text
    Rheumatoid arthritis (RA) is a chronic debilitating disease characterized by distinct autoimmune, inflammatory and fibrovascular components which lead to synovial proliferation and joint destruction. However, existing treatments specifically target only autoimmune and inflammatory components despite the fact that neovascularization of the inflamed synovium is a hallmark of rheumatoid arthritis. Angiogenesis may contribute to synovial growth, leukocyte recruitment and tissue remodeling, thus potentiating disease progression. Although no therapies currently target angiogenesis, several existing therapies have anti-angiogenic activity. Recent advances in anti-angiogenic strategies in oncology, including the identification of integrin <FONT FACE="Symbol">a</font>vß3 as a crucial effector of angiogenesis, suggest a means to assess the role of angiogenesis in rheumatoid arthritis. Synovial endothelial cells have been shown to express integrin <FONT FACE="Symbol">a</font>vß3, suggesting that these cells may be targeted for angiogenesis inhibition. Prior studies in rat arthritis models have shown benefit after the addition of broad spectrum integrin antagonists. However, formal assessment of integrin-targeted anti-angiogenic activity is now underway. These controlled studies will be important in assessing the efficacy of therapies which target angiogenesis in RA
    corecore