126 research outputs found
Breaking Peroxy Bonds in H20 Ice Doped with H202 to Create Positive Hole Charge Carriers.
Using stress-activated electric conductivity in water ice doped with hydrogen peroxide as a model for stress-activated electric conductivity of igneous and high-grade metamorphic rocks due to the presence of peroxy defects, which when broken, createpositive-hole charge carriers. Blocks of pure H2O ice and H2O2–doped H2O ices, frozen at –20°C, will be stressed with piezo electric transducers(pzt) at one end to generate stress-activated electric currents flowing down the stress gradient. Pure H2O ice should produce no current or a small insignificant amount during rapid deformation or fracture. Stressing H2O2-doped H2O ices, however, should lead to 100-1000 times higher currents. These stress-activated currents are carried by defect electrons, generated by the break-up of the peroxy bonds of H2O2molecules embedded in the ice structure. These defect electrons are associated with the oxygen anion sub-lattice and known as positive holes. H2O2–doped H2O ices can be viewed as analogs to igneous and high-grade metamorphic rocks, which naturally contain peroxy defects, typically O3Si-OO-SiO3, and also produce positive hole currents when subjected to stres
A Dynamical Theory of Electron Transfer: Crossover from Weak to Strong Electronic Coupling
We present a real-time path integral theory for the rate of electron transfer
reactions. Using graph theoretic techniques, the dynamics is expressed in a
formally exact way as a set of integral equations. With a simple approximation
for the self-energy, the rate can then be computed analytically to all orders
in the electronic coupling matrix element. We present results for the crossover
region between weak (nonadiabatic) and strong (adiabatic) electronic coupling
and show that this theory provides a rigorous justification for the salient
features of the rate expected within conventional electron transfer theory.
Nonetheless, we find distinct characteristics of quantum behavior even in the
strongly adiabatic limit where classical rate theory is conventionally thought
to be applicable. To our knowledge, this theory is the first systematic
dynamical treatment of the full crossover region.Comment: 11 pages, LaTeX, 8 Postscript figures to be published in J. Chem.
Phy
Is the direct observation of electronic coherence in electron transfer reactions possible?
The observability of electronic coherence in electron transfer reactions is
discussed. We show that under appropriate circumstances large-amplitude
oscillations can be found in the electronic occupation probabilities. The
initial preparation of the system is of crucial importance for this effect, and
we discuss conditions under which experiments detecting electronic coherence
should be feasible. The Feynman-Vernon influence functional formalism is
extended to examine more general and experimentally relevant initial
preparations. Analytical expressions and path integral quantum dynamics
simulations were developed to study the effects of various initial preparations
on the observability of electronic coherence.Comment: 14 pages, 9 figures, to be published in J. Chem. Phy
Magnetic Field Dependent Tunneling in Glasses
We report on experiments giving evidence for quantum effects of
electromagnetic flux in barium alumosilicate glass. In contrast to expectation,
below 100 mK the dielectric response becomes sensitive to magnetic fields. The
experimental findings include both, the complete lifting of the dielectric
saturation by weak magnetic fields and oscillations of the dielectric response
in the low temperature resonant regime. As origin of these effects we suggest
that the magnetic induction field violates the time reversal invariance leading
to a flux periodicity in the energy levels of tunneling systems. At low
temperatures, this effect is strongly enhanced by the interaction between
tunneling systems and thus becomes measurable.Comment: 4 pages, 4 figure
Brachistochrone of Entanglement for Spin Chains
We analytically investigate the role of entanglement in time-optimal state
evolution as an appli- cation of the quantum brachistochrone, a general method
for obtaining the optimal time-dependent Hamiltonian for reaching a target
quantum state. As a model, we treat two qubits indirectly cou- pled through an
intermediate qubit that is directly controllable, which represents a typical
situation in quantum information processing. We find the time-optimal unitary
evolution law and quantify residual entanglement by the two-tangle between the
indirectly coupled qubits, for all possible sets of initial pure quantum states
of a tripartite system. The integrals of the motion of the brachistochrone are
determined by fixing the minimal time at which the residual entanglement is
maximized. Entan- glement plays a role for W and GHZ initial quantum states,
and for the bi-separable initial state in which the indirectly coupled qubits
have a nonzero value of the 2-tangle.Comment: 9 pages, 4 figure
Non-Markoffian effects of a simple nonlinear bath
We analyze a model of a nonlinear bath consisting of a single two-level
system coupled to a linear bath (a classical noise force in the limit
considered here). This allows us to study the effects of a nonlinear,
non-Markoffian bath in a particularly simple situation. We analyze the effects
of this bath onto the dynamics of a spin by calculating the decay of the
equilibrium correlator of the spin's z-component. The exact results are
compared with those obtained using three commonly used approximations: a
Markoffian master equation for the spin dynamics, a weak-coupling
approximation, and the substitution of a linear bath for the original nonlinear
bath.Comment: 7 pages, 6 figure
Long-term clinical effects of ventricular pacing reduction with a changeover mode to minimize ventricular pacing in a general pacemaker population
AIM: Right ventricular pacing (VP) has been hypothesized to increase the risk in heart failure (HF) and atrial fibrillation (AF). The ANSWER study evaluated, whether an AAI-DDD changeover mode to minimize VP (SafeR) improves outcome compared with DDD in a general dual-chamber pacemaker population. METHODS AND RESULTS: ANSWER was a randomized controlled multicentre trial assessing SafeR vs. standard DDD in sinus node disease (SND) or AV block (AVB) patients. After a 1-month run-in period, they were randomized (1 : 1) and followed for 3 years. Pre-specified co-primary end-points were VP and the composite of hospitalization for HF, AF, or cardioversion. Pre-specified secondary end-points were cardiac death or HF hospitalizations and cardiovascular hospitalizations. ANSWER enrolled 650 patients (52.0% SND, 48% AVB) at 43 European centres and randomized in SafeR (n = 314) or DDD (n = 318). The SafeR mode showed a significant decrease in VP compared with DDD (11.5 vs. 93.6%, P < 0.0001 at 3 years). Deaths and syncope did not differ between randomization arms. No significant difference between groups [HR = 0.78; 95% CI (0.48-1.25); P = 0.30] was found in the time to event of the co-primary composite of hospitalization for HF, AF, or cardioversion, nor in the individual components. SafeR showed a 51% risk reduction (RR) in experiencing cardiac death or HF hospitalization [HR = 0.49; 95% CI (0.27-0.90); P = 0.02] and 30% RR in experiencing cardiovascular hospitalizations [HR = 0.70; 95% CI (0.49-1.00); P = 0.05]. CONCLUSION: SafeR safely and significantly reduced VP in a general pacemaker population though had no effect on hospitalization for HF, AF, or cardioversion, when compared with DDD
Dynamical control of correlated states in a square quantum dot
In the limit of low particle density, electrons confined to a quantum dot
form strongly correlated states termed Wigner molecules, in which the Coulomb
interaction causes the electrons to become highly localized in space. By using
an effective model of Hubbard-type to describe these states, we investigate how
an oscillatory electric field can drive the dynamics of a two-electron Wigner
molecule held in a square quantum dot. We find that, for certain combinations
of frequency and strength of the applied field, the tunneling between various
charge configurations can be strongly quenched, and we relate this phenomenon
to the presence of anti-crossings in the Floquet quasi-energy spectrum. We
further obtain simple analytic expressions for the location of these
anti-crossings, which allows the effective parameters for a given quantum dot
to be directly measured in experiment, and suggests the exciting possibility of
using ac-fields to control the time evolution of entangled states in mesoscopic
devices.Comment: Replaced with version to be published in Phys. Rev.
- …